پترولوژی و ژئوشیمی گنبد آتشفشانی ایوب انصار، جنوب خاور تکاب

نوع مقاله : علمی -پژوهشی

نویسندگان

دانشگاه زنجان

10.29252/esrj.9.1.103

چکیده

گنبد آتشفشانی ایوب انصار در حدود 25 کیلومتری جنوب­خاور تکاب، در بخش میانی نقشه 1:100000 تکاب قرار گرفته ­است. منطقه مورد مطالعه بخشی از ایران ‏مرکزی را در محل تلاقی پهنه­‌های ساختمانی ایران ‏مرکزی و سنندج-سیرجان تشکیل می­دهد. گنبد آتشفشانی ایوب انصار به داخل واحدهای مارنی- ماسه­سنگی میوسن نفوذ کرده است. گنبد آتشفشانی مزبور با راستای تقریبی خاوری- باختری با طول حدود 5/4 کیلومتر و پهنای حدود 5/2 کیلومتر رخنمون یافته است. براساس مطالعات سنگ­شناختی، گنبد آتشفشانی ایوب انصار دارای ترکیب داسیتی-ریوداسیتی می­باشد. این سنگ­ها دارای بافت­های پورفیری، فلسوفیری و گلومروپورفیری با حضور فنوکریست­های پلاژیوکلاز، آمفیبول و کوارتز می­باشند. براساس شواهد ژئوشیمیایی، این سنگ­ها ماهیت کالک­آلکالن پتاسیم متوسط داشته و از لحاظ درجه اشباع از آلومینیوم، متاآلومین و تا حدودی متمایل به پرآلومین می­باشند. این سنگ­ها در زمره گرانیتوئیدهای نوع I طبقه­بندی می­شوند. عناصر کمیاب خاکی یک الگوی با شیب منفی غنی­ از عناصر LREE با نسبت بالای LREE/HREE را بدون وجود آنومالی منفی Eu نشان می­دهند که گویای عدم وقوع فرایند تبلور بخشی پلاژیوکلاز در ماگما می­باشد. غنی­شدگی عناصری مانند K، Rb وBa  و آنومالی منفی عناصر با میدان پایداری بالا (HFSE) نظیر Nb،Ta  و Ti در نمودارهای عنکبوتی می­تواند در ارتباط با نقش پوسته قاره­ای در شکل­گیری ماگمای مادر باشد. براساس نمودارهای تمایز محیط تکتونیکی، سنگ­های مورد مطالعه در محیط­های کمان قاره­ای و هم­زمان با برخورد تا پس از برخورد تشکیل شده­اند. سنگ‌های داسیتی مورد مطالعه، مشخصات ژئوشیمیایی مشابه آداکیت‌ها را نشان می‌دهند.

کلیدواژه‌ها


عنوان مقاله [English]

Petrology and Geochemistry of Ayoub Ansar volcanic dome, SE Takab

چکیده [English]

Studied area which is introduced as Ayoub Ansar volcanic dome, located about the 25 km southeast of the Takab, in the central part of the Takab 1:100000 geological map. This area is a part of Central Iranian Zone at the junction of Sanandaj- Sirjan and Central Iranian Zones. Ayoub Ansar volcanic dome intruded into the marl and sandstones of Miocene. In this base, post Miocene age could be considered to it. This volcanic dome croups out in E-W trend with length about 4.5 km and 2.5 km width. Based on petrographic studies, Ayoub Ansar volcanic dome has dacitic- rhyodacitic composition. These rocks have porphyritic, felsophyritic and golmero- porphyritic texture with plagioclase, Amphibole and quartz phenocrysts. Based on geochemical evidences, these rocks are high- K calc-alkaline, metaluminous to peraluminous and classified as I-type granitoids. These rocks demonstrate REE patterns with enrichment in LREE, high LREE/HREE ratio and without negative Eu anomalies which indicate that plagioclase didn’t underwent fractionation. Enrichment in K, Rb and Ba and negative anomalies for HFSEs such as Nb, Ta and Ti in the spider diagrams indicative for influence of the continental crust in formation of parent magma. Based on tectonic setting discrimination diagrams, these rocks formed at the volcanic arc and Syn-collisional to post- collisional setting. The studied dacites demonstrate geochemical features like Adakites.

کلیدواژه‌ها [English]

  • Volcanic dome
  • Ayoub Ansar
  • Takab
  • Petrology
  • Geochemistry
  1. -آقانباتی، س.ع.، 1383. زمین‌شناسی ایران، انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور، 569 ص.
  2. -به‌منش، م.، 1392. گزارش پی‌جویی در محدوده اکتشافی عربشاه، جنوب شرق تکاب، سازمان صنعت، معدن و تجارت استان آذربایجان غربی.
  3. -حیدری، م.، 1392. زمین‌شناسی، سن‌سنجی و خاستگاه رخدادهای طلای توزلار، عربشاه و گوزل بلاغ در ناحیه قروه-تکاب، رساله دکتری، دانشکده علوم پایه، دانشگاه تربیت مدرس تهران.
  4. -خدایی‌کلام، س.، 1393. بررسی آلودگی زیست-محیطی عنصرهای سنگین سمی ناشی از کانی-سازی در منطقه عربشاه- آذربایجان غربی، پایان‌نامه کارشناسی‌ارشد، دانشگاه زنجان.
  5. -شیرخانی، م.، قادری، م.، رشیدنژاد عمران، ن. و محمدی نیایی، ر.، 1385. تفسیر و کاربرد اکتشافی داده‌های آنالیز Enzyme LeachSMدر کانسار پلی‌متال آی‌قلعه‌سی، جنوب‌شرق تکاب، بیست و پنجمین گردهمایی علوم زمین، سازمان زمین-شناسی و اکتشافات معدنی کشور.
  6. -شیرخانی، م.، 1387. کانی‌شناسی، ژئوشیمی و ژنز کانسار سرب- روی آی‌قلعه‌سی، جنوب‌خاور تکاب، پایان‌نامه کارشناسی‌ارشد، دانشگاه تربیت مدرس، 143 ص.
  7. -فنودی، م. و حریری، ع.، 1379. نقشه زمین-شناسی1:100000 تکاب، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
  8. -طریقی، ف. و عابدینی، ع.، 1392. ژئوشیمی عناصر اصلی، فرعی و جزئی ذخیره کائولن عربشاه، جنوب‌شرق تکاب، استان آذربایجان غربی، شمال-غرب ایران، اولین همایش زمین‌شیمی کاربردی ایران، دانشگاه دامغان.
  9. -محمدی نیائی، ر.، 1393. ژنز و زمین‌شناسی اقتصادی کانسار سرب- روی آی‌قلعه‌سی با نگرشی ویژه بر کانی‌سازی فلزهای گرانبها، پایان‌نامه دکتری، دانشگاه آزاد واحد علوم و تحقیقات.
  10. -نایبی، ن.، اسماعیلی، د.، قربانی، م. و وصالی، ی.، 1395. سنگ‌شناسی، زمین‌شیمی و خاستگاه زمین‌ساختی توده‌های نیمه‌نفوذی کوه گورگور در شمال‌باختری معدن طلای زرشوران (شمال‌باختر تکاب، آذربایجان غربی)، پترولوژی، شماره 26، ص 117-134.
  11. -نجف‌زاده، م.، 1394. پتروگرافی سنگ‌های دگرگونی منطقه عربشاه (جنوب‌شرق تکاب) با نگرشی بر کانه‌زایی As-Au، پایان‌نامه کارشناسی-ارشد، دانشگاه زنجان، 92 ص.
  12. -نجف‌زاده، م.، ابراهیمی، م.، مختاری، م.ع.ا. و کوهستانی، ح.، 1395. رخداد معدنی عربشاه: کانه-زایی اپی‌ترمال طلا- آرسنیک- آنتیموان تیپ کارلین در پهنه فلززایی تکاب- انگوران- تخت-سلیمان، آذربایجان غربی، مجله زمین‌شناسی کاربردی پیشرفته، شماره 25، ص 61-76.
  13. -Asadi Harooni, H., Voncken, J.H.L., Kuhnel, R.A. and Hale, M., 2000. Petrography, mineralogy and geochemistry of the Zarshuran gold deposit and implications for ore genesis, Mineralium Deposita, v.52, p. 128-142.
  14. -Azizi, H. and Moinvaziri, H., 2009. Review of the tectonic setting of Cretaceous to Quaternar y volcanism in northwestern Iran, Journal of Geodynamics, v. 47, p. 167-179
  15. -Batchelor, R.A. and Bowden, P., 1985. Petrogenetic interpretation of granitic rock series using multicationic parameters, Chemical Geology, v. 48, p. 43-55.
  16. -Cox, K.G., Bell, J.D. and Pankhurst, R.J., 1979. The interpretation of igneous rocks, George, Allen and Unwin, London.
  17. -Daliran, F., Walther, J. and Stüben, D., 1999. Sediment-hosted disseminated gold mineralization in the North Takab geothermal field, NW-Iran–In: Stanley, C.J. et al. (Eds.): Mineral Deposits: Processes to Processing, Proceed, 5th biennial SGA Meeting and 10th Quadr, Lagod Meeting, p. 837- 840.
  18. -Daliran, F., Hofstra, A.H., Walther, J. and Stüben, D., 2002. Aghdarreh and Zarshuran SRHDG deposits, Takab region, NW Iran, GSA Annual Meeting, Abstract with Programs, p. 8-63.
  19. -Daliran, F., 2008. The carbonate rock-hosted epithermal gold deposit of Aghdarreh, Takab geothermal field, NW Iran, hydrothermal alteration and mineralization, Mineralium Deposita, v. 43, p. 383-404.
  20. -Defant, M.J. and Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, v. 347, p. 662-665.
  21. -Goehring, L., 2013. Evolving fracture patterns: columnar joints, mud cracks and polygonal terrain, Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences, 18 p.
  22. -Harris, C., 1983. The petrology of lavas and associated plutonic characteristics of collision zone magmatism, In: Cowards, M.P. and Reis, A. C. (Eds.) Collision tectonics, Special Publication, Geological Society, London, v. 19, p. 67-81.
  23. -Irvine, T.N. and Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks, Canadian journal of earth science, v.8, p. 523-276.
  24. -Ivono, D.A. and Hoffman, A.W., 1995. Nb-Ta-rich mantle amphiboles and mica: implication for subduction-related metasomatic trace element fractionation, Earth and Planetary Science Letters, v. 131(3-4), p. 341-356.
  25. -Kamber, B.S., Ewart, A., Collerson, K.D., Bruce, M.C. and McDonald, G.D., 2002. Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models, Contributions to Mineralogy and Petrology, v.144, p. 38-56.
  26. -Kelemen, P.B., Shimizu, N. and Dunn, T., 1993. Relative depletion of Nb in some arc magmas and continental crust: Partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth and Planetary Science letters, v. 120, p. 111-134.
  27. -Maniar, P.D. and Piccoli, P.M., 1989. Tectonic discrimination of granitoids, Geological Society of America Bulletin, v. 101, p. 635-643.
  28. -Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F. and Champion, D., 2005. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG) and sanukitoid: relationships and some implications for crustal evolution, Lithos, v. 79, p. 1-24.
  29. -McCutcheon, S.R. and Robinson, P.T., 1988. Embayed volcanic quartz, a product of cellular growth rather than resorption, Marit, Sediments Atlantic Geology, N. 24, 203 p.
  30. -McDonough, W.F. and Sun, S.S., 1995. Composition of the Earth, Chemical Geology, v. 120, p. 223-253.
  31. -Mehrabi, B., 1997. Genesis of Zarshuran gold deposit, NW Iran, Unpublished PhD thesis, University of Leeds, Leeds, UK.
  32. -Mohamadi Niaei, R., Daliran, F., Nezafati, N., Ghorbani, M., Sheikh Zakariaei, J. and Kouhestani, H., 2015. The Ay Qalasi deposit: An epithermal Pb–Zn (Ag) mineralization in the Urumieh–Dokhtar Volcanic Belt of northwestern Iran, Neues Jahrbuch für Mineralogie Abhandlungen (J. Min. Geochem.), v. 192(3), p. 263-274.
  33. -Pearce, J.A., Haris, N.B.W. and Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of rocks, Journal of Petrology, v. 25, p. 956-125.
  34. -Pearce, J.A., 1996. Sources and setting of granitic rock. Episodes, v. 19(4), p. 120-125.
  35. -Peccerillo, A. and Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey, Contribution to Mineralogy and Petrology, v. 58, p. 63-81.
  36. -Richards, J.P., Wilkinson, D. and Ullrich, T., 2006. Geology of the Sari Gunay Epithermal Gold Deposit, Northwest Iran. Economic Geology, v. 101(8), p. 1455-1496.
  37. -Rollinson, R., 1993. Using geochemical Data: Evaluation, presentation and interpretation, Longman scientific and technical, London, 352 p.
  38. -Schandl, E.S. and Gorton, M.P., 2002. Application of high strength elements to discriminate tectonic setting in VMS environments, Economic Geology, v. 97, p. 629- 642.
  39. -Shelley, D., 1993. Igneous and metamorphic rocks under the microscope, Chapman and Hall, 445 p.
  40. -Srivastava, R.K. and Singh, R.K., 2004. Trace element geochemistry and genesis of Precambrian sub-alkaline mafic dikes from the central Indian Craton: evidence for mantle metasomatism, Journal of Asian Earth Sciences, v.23, p. 373-389.
  41. -Taylor, S.R. and McLennan, S.A., 1985. The continental crust: its composition and evolution, Geoscience Texts, Blackwell scientific Publications, London, 312 p.
  42. -Turner, S., Arnaud, N., Liu, J., Rogers, N., Hawkesworth, C., Harris, N., Kelley, D., Calsteren, P.V. and Deng, W.M., 1996. Post -collisional, shoshonitic volcanism on the Tibetan plateau: implications for convective thing of ocean island basalt, Journal of petrology, v. 37, p. 45-71.
  43. -Wilson, M., 1989. Igneous petrogenesis, a global tectonic approach, Unwin Hyman, London, 466 p.
  44. -Winchester, J.A. and Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements, Chemical Geology, v. 20, p. 325-343.
  45. -Wright, J.B. and McCurry, P., 1997. Geochemistry of calc-alkaline volcanic in northwestern Nigeria, and a possible PAN-AFRICAN suture zone, Earth and Planetary Science Letters, v. 37, p. 90-96.
  46. -Wu, F., Jahnb, B., Wildec, S.A., Lod, C.H., Yuie, T.F., Lina, Q., Gea, W. and Suna, D., 2003. Highly fractionated I-type granites in NE China (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic, Lithos, v. 67, p. 191-204.
  47. -Zhao, J.H. and Zhou, M.F., 2007. Geochemistry of Neo-Proterozoic mafic intrusions in the Panzhihaua distinct (Sichuhan Provenance, SW China), Precambrian Research, v. 152, p. 27-47.