زمین شیمی، زمین دما- فشار سنجی و جایگاه تکتونیکی سنگ‌های بازیک شمال سرو (شمال غرب ارومیه)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم پایه، دانشگاه لرستان، خرم آباد، ایران

2 دانشگاه ارومیه، دانشکده علوم پایه، گروه زمین شناسی

3 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کرمانشاه، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمانشاه، ایران

4 گروه زمین‌شناسی، دانشکده علوم پایه، دانشگاه زنجان، زنجان، ایران

چکیده

بازالت‌های کواترنری شمال سرو با ترکیب آلکالی بازالت تا آندزیت بازالتی به صورت گدازه‌های منشوری و اسکوری در شمال غرب ارومیه و در مرز زون‌های سنندج - سیرجان و ارومیه - دختر رخنمون یافته‌اند. کانی‌های اصلی تشکیل دهنده این سنگ‌ها شامل الیوین، کلینوپیروکسن، ارتوپیروکسن و پلاژیوکلاز است. تجزیه نقطه‌ای کانی‌ها بیانگر ترکیب کریزولیتی در الیوین، دیوپسید تا اوژیت دیوپسیدی در کلینوپیروکسن‌، هیپرستن در ارتوپیروکسن و نیز لابرادوریتی در پلاژیوکلازها می‌باشد. براساس محاسبات و نمودارهای زمین دما-فشار‌سنجی، دمای تشکیل کلینوپیروکسن در سنگ‌های آلکالی بازالت و آندزیت بازالتی برابر با 1000 تا 1250 درجه سانتی‌گراد و فشار برآورد شده آنها کمتر از 5 کیلوبار است. همچنین محتوی Fe3+ وتوزیع AlVI-AlIV در کلینوپیروکسن‌ها به ترتیب نشان از شرایط فشار بخشی نسبتاً بالای (گریزندگی) اکسیژن و مقدار آب ماگما به میزان 10% در محیط تبلور آنها دارد. نتایج حاصل از تجزیه شیمیایی سنگ کل بیانگر ماهیت آلکالن و جایگاه تکتونیکی درون صفحه‌ای این سنگ‌ها است. به لحاظ تکتونیکی، به نظر می‌رسد تشکیل این سنگ‌ها با فرآیندهای پس از بسته شدن کامل اقیانوس نئوتتیس و تصادم قاره‌ای مرتبط باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Geochemistry, geothermobarometry and tectonic setting of basaltic rocks of the north of Serow (NW-Urmia)

نویسندگان [English]

  • Shahab Yousefvand 1
  • Ahmad Ahmadi Khalaji 1
  • Narges Beiranvandpour 2
  • Ali Moradpour 3
  • Rasoul Esmaeili 4
  • Zahra Tahmasbi 1
1 Department of Geology, Faculty of Sciences, Lorestan University, Khorramabad, Iran
2 Department of Geology, Faculty of Sciences, Urmia University, Urmia, Iran
3 Kermanshah Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Kermanshah, Iran
4 Department of Geology, Faculty of Sciences, Zanjan University, Zanjan, Iran
چکیده [English]

Extended abstract
Introduction
The basic rocks in the Serowarea(northwest of Urmia) are exposed to young alluvium (Quaternary). These rocks are part of the metamorphic Sanandaj-Sirjan belt. The study area is composed of various igneous, metamorphic and sedimentary rocks and the age range is from Precambrian to the present era.
Materials and methods
In order to perform a chemistry study of northern Serowlavas, 10 rock samples were analyzed by the ICP-MS method in Bureau Veritas laboratory in Canada. Also, olivine, orthopyroxene, clinopyroxene and plagioclase minerals were analyzed at the Institute of Geology and Geophysics of the Chinese Academy of Sciences (IGGCAS) by the JEOL JXA-81 microprobe electron analyzer.
Discussion and results
Field studies and petrographic observations indicate that the rocks of the Serow area can be divided into alkaline basalt, trachy- basalt and trachy- andesite. One of the major textures in these rocks is porphyry texture and to a lesser extent trachyte texture. Plagioclase, orthopyroxene, clinopyroxene, olivine and amphibole are the minerals that make up these rocks. Calcite mineral is the most important and main secondary mineral in these rocks, which often fills the cavities and gives them amygdale tissue.
The results of the chemical analysis of the studied rocks show that their composition is basalt to trachy- andesite-basalt and they are alkaline and within plate basalts type. Examination of rare earth elements in these rocks show that the studied samples have little differentiation in rare earth elements, especially in HREEs. But, LILEs are more differentiated and enriched. Therefore, in the normalized pattern, they show a decreasing trend from Ba to Yb. Enrichment in LILEs and LREEs compared to HFSEs and HREEs, presence of negative anomalies in Ta, Nb, P and Ti elements along with enrichment of Rb and Ba elements can be due to the role of fluids in subduction zones. The ratios of Smn/Lan, Lan/Ybn  and Smn/Ybn can be used as evidence of low melting rate and the presence of garnet in the residual melting. The La/Sm versus Sm/Yb diagram has been used to determine the degree of melting of the source rock, showing the degree of melting of 1% of the source rock with spinel peridotite composition.
The results of electron microprobe analysis of olivine mineral show that the average value of Fo in alkaline basalts is 85.77 (Fo 85.77) and in andesite – basalts it is 82.29 (Fo 82.29). Clinopyroxene mineral has diopside composition in alkaline basalt rocks and diopside augite composition in basaltic andesite rocks. Orthopyroxenes ranges from En 56.84-57.03, Wo3.14-3.33 and Fs 39.36-39.54 .The composition of plagioclase in alkali and andesitic basalts is in the labradorite range.
Conclusion
The basic rocks in the Serow are consistent of olivine + clinopyroxene + plagioclase ± orthopyroxene ± amphibole. The results of the geochemical analysis reveal the alkaline nature and intra plate setting and volcanic arcs of these rocks. Pyroxene mineral chemistry shows relatively high oxygen pressure conditions and a water content of 10% during the crystallization of clinopyroxenes. Based on the calculations and geothermobarometric diagrams, the formation temperature of clinopyroxene in alkali basalts and andesitic basalts is 1000 to 1250˚C and their estimated pressure is less than 5 Kbar. From the tectonic point of view, it seems that the formation of these rocks is associated with processes following the complete closure of the Neo-Tethys Ocean and the continental collision.

کلیدواژه‌ها [English]

  • Neo-Tethys
  • Urmia
  • Serow
  • Basaltic lava
  • Thermobarometry
-خیرخواه، م. و امامی، م.ه.، 1389. خاستگاه و تحولات ماگماهای بازالتی کواترنری شمال باختری آذربایجان (بورلان تا گنبد) با استفاده از بررسی های ایزوتوپی Sr-Nd، علوم زمین، دوره 19، شماره 76، ص 113-118.
-زارعی سهامیه، ر. و مرادپور، ع.، 1394. ژئوشیمی و سنگ زایی مجموعه افیولیتی هرسین- صحنه (شمال شرق کرمانشاه- غرب ایران) شاهدی بر زمین ساخت جنوب نئوتتیس، مجله بلورشناسی و کانی­شناسی ایران، سال 23، شماره 2، ص 331-344.
-فضل نیا، ع. و کوزه کلانی، ف.، 1391. پتروگرافی، زمین‌شیمی و محیط تکتونوماگمایی لامپروفیرها و سنگ‌های مرتبط، جنوب‌غرب سلماس، پترولوژی، دوره 3، شماره 12، ص 69-83.
-مرادپور، ع.، زارعی سهامیه، ر.، احمدی خلجی، ا. و ساریخانی، ر.، 1397. بررسی واکنش گدازه/سنگ، ذوب‌بخشی و خاستگاه پریدوتیت‌های کرمانشاه به کمک شواهد بافتی و شیمی کانی، مجله بلورشناسی و کانی شناسی ایران، سال 26، شماره 1، ص 161-178.
 
 
 
-Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B. and Wortel, R., 2011. Zagros orogeny: a subduction-dominated process: Mineralogical Magazine, v. 148, p. 692-725.
-Ajdari, K., Mohammadi Tork Abad, H. and Ramezani Ardekani, F., 2004. Geological Map of Serow, 1:100000 Scale. Geological Survey of Iran.
-Alizadeh, A., López Martínez, M. and Sarkarinejad, K., 2010. Ar40-Ar39 geochronology in a gneiss dome within the Zagros Orogenic Belt: Cometes Rendus Geoscience, v. 342, p. 837-846.
-Ao, S.J., Xiao, W.J., Han, C.M., Mao, Q.G. and Zhang, J.E., 2010. Geochronology and geochemistry of early Permian mafic-ultramafic complexes in the Beishan area, Xinjiang, NW China: implications for late Paleozoic tectonic evolution of the southern Altaids: Gondwana Research, v. 18, p. 466-478.
-Arvin, M., Pan, Y., Dargahi, S., Malekizadeh, A. and Babaei, A., 2007. Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: Implications for initiation of Neotethys subduction: Journal of Asian Earth Sciences, v. 30, p. 474-489.
-Azizi, H. and Moinevaziri, H., 2009. Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran: Journal of Geodynamics, v. 47, p. 167-179.
-Azizi, H., Asahara, Y. and Tsuboi, M., 2014. Quaternary high-Nb basalts: existence of young oceanic crust under the Sanandaj–Sirjan Zone, NW Iran: International Geology Review, v. 56, p. 167-186.
-Beccaluva, L., Macciotta, G., Piccardo, G.B. and Zeda, O., 1989. Clinopyroxene composition of ophiolite basalts as petrogenetic indicator: Chemical Geology, v. 77, p. 165-182.
-Cameron, M. and Papike, J.J., 1981. Structural and chemical variations: American Mineralogist, v. 66, p. 1-50.
-Deer, W.A., Howie, R.A. and Zussman, J., 1992. An Introduction to the Rock Forming Minerals: 2nd edition Pearson Education Limited, United Kingdom, 696 p.
-Droop, G.T.R., 1987. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stochiometric criteria: Mineralogical Magazine, v. 51, p. 431-435.
-Elmas, A. and Yilmaz, Y., 2003. Development of an oblique subduction zone-Tectonic evolution of the Tethys suture zone in southeast Turkey: International Geology Review, v. 45, p. 827-840.
-Foley, S.F., Jackson, S.E., Freyer, B.J., Grenough, J.D. and Jenner, G.A., 1996. Trace element partition coeffi cients or clinopyroxene and phlogopite in an alkaline-lamprophyre from Newfoundland by LAM-ICP-MS: Geochimica et Cosmochimica Acta, v. 60, p. 629-638.
-France, L., Ildefonse, B., Koepke, J. and Bech, F., 2010. A new method to estimate the oxidation state of basaltic series from microprobe analyses: Journal of Volcanology and Geothermal Research, v. 189, p. 340-346.
-Ghalamghash, J., Nedelec, A., Bellon, H., Vousoughi Abedini, M. and Bouchez, J.L., 2009. The Urmieh plutonic complex (NW Iran): A record of the geodynamic evolution of the Sanadaj-Sirjan zone during Ceretaceous time-Part I: Petrogenesis and K/Ar dating: Journal of Asian Earth Sciences, v. 35, p. 401-415.
-Haghipour, A. and Aghanabati, A., 1988. Geological Map of Serow, 1:250000 Scale, Geological Survey of Iran.
-Helz, R.T., 1973. Phase relationships of basalts in their melting range at pH2O = 5 kb as a function of oxygen fugacity: Journal of Petrology, v. 14, p. 249-302.
-Jiang, Y.H., Jiang, S.Y., Ling, H.F. and Dai, B.Z., 2006. Low-degree melting of a metasomatized lithospheric mantle for theorigin of Cenozoic Yulong monzogranite-porphyry, east Tibrl: Geochemical and Sr-Nd-Pb-Hf isotopic constraints: Earth and Planetary Science Letters, v. 241, p. 617-633.
-Keskin, M., 2005. Domal uplift and volcanism in a collision zone without a mantle plume: Evidnce from Eastern Anatolia.https://www.researchgate .net /publication/241329729.
-Kheirkhah, M., Allen, M.B. and Emami, M., 2009. Quaternary syn-collision magmatism from the Iran/Turkey borderlands: Journal of Volcanology and Geothermal Research, v. 182, p. 1-12.
-Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. and Zanettin, B., 1986. A chemical classification of volcanic rocks on the total alkali-silica diagram: Journal of Petrolgy, v. 27, p. 745-750.
-Lindsley, D.H., 1983. Pyroxene thermometry. American mineralogist, v. 68, p. 477-493.
-McClay, K.R., Whitehouse, P.S., Dooley, T. and Richards, M., 2004. 3D evolution of fold and thrust belts formed by oblique convergence: Marine and Petroleum Geology, v. 21, p. 857-877.
-Mirnejad, H., Hassanzadeh, J., Cousens, B.L. and Taylor, B.E., 2010. Geochemical evidence for deep mantle melting and lithospheric delamination as the origin of the inland Damavand volcanic rocks of northern Iran: Journal of Volcanology and Geothermal Research, v. 198, p. 288-296.
-Moretti, R., 2005. Polymerization, basicity, oxidation state and their role in ionic modelling of silicate melts: Geophysics, v. 48, p. 583-608.
-Morimoto, N., 1989. Nomenclature of pyroxenes: Canadian Mineralogist, v. 27, p. 143-156.
-Morimoto, N., Fabrise, J., Ferguson, A., Ginzburg, I.V., Ross, M., Seifert, F.A., Zussman, J., Akoi, K. and Gottardi, G., 1988. Nomenclature of pyroxenes: American Mineralogist, v. 173, p. 1123-1133.
-Nabavi, M.H., 1976. A Preface to Iranian Geology, Geological Survey of Iran, Tehran, Geological Survey of Iran, p. 109.
-Nimis, P. and Taylore, W.R., 2000. Single clinopyroxene thermobaromrtry for garnet peridotites; Part I: Calibration and testing of a Crin- Cpx barometer and an Enstatite-in-Cpx thermometer: Contributions to Mineralogy and Petrology, v. 139, p. 544-554.
-Nisbet, E.G. and Pearce, J.A., 1977. Clinopyroxene composition in mafic lavas from different tectonic settings: Contribution to Mineralogy and Petrology, v. 63, p. 149-160.
-Pearce, J.A. and Norry, M.J., 1979. Petrogenesis implication of Ti, Zr, Y and Nb variations in volcanic rocks rocks: Contributions to Mineralogy and Petrology, v. 69, p. 33-47.
-Pearce, J.A., Bender, J.F., DeLong, S.E., Kidd, W.S.F., Low, P.J., Guner, Y., Saroglu, F., Yilmaz, Y., Moorbath, S. and Mitchell, J.J., 1990. Genesis of collision volcanism in eastern Anatolia Turkey: Journal of Volcanological and Geothermal Research, v. 44, p. 189-229.
-Pearce, J.A. and Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas: Annu. Rev. Earth and Planetary Science Letters, v. 23, p. 1073-1109
-Schweitzer, E.L., Papike, J.J. and Bence, A.E., 1974. Statistical analysis of clinopyroxenes from deepsea basalts: American Mineralogist, v. 64, p. 501-13.
-Shafaii Moghadam, H., Ghorbani, G., Zaki Khedr, M., Fazlnia, N., Chiaradia, M., Eyuboglu, Y., Santosh, M., Galindo Francisco, C., Lopez Martinez, M., Gourgaud, A. and Arai, S., 2014. Late Miocene K-rich volcanism in the Eslamieh Peninsula (Saray), NW Iran: implications for geodynamic evolution of the Turkish–Iranian High Plateau: Gondwana Research, v. 26, p. 1028-1050.
-Soesoo, A., 1997. A multivariate statistical analysis of clinopyroxene composition: empirical coordinates for the crystallisation PTestimations: Geological Society of Sweden (Geologiska Föreningen), v. 119, p. 55-60.
-Stöcklin, J., 1968. Structural history and tectonics of Iran: a review: The American Association of Petroleum Geologists Bulletin, v. 52, p. 1229-1258.
-Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic-systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins: Geological Society of London Special Publication, v. 42, p. 313-345.
-Wass, S.Y., 1979. Multiple origins of clinopyrocxenes in alkali basaltic rock: Lithos, v. 12, p. 115-132.
-Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals:  American Mineralogist, v. 95, p. 185-187.
-Winchester, J.A. and Floyd, P.A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Product Using Immobile Elements: Chemical Geology, v. 20, p. 325-343.