نوع مقاله : مقاله پژوهشی
نویسندگان
گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
Introduction: Climate change has had irreversible effects on the planet Earth. The impacts of these changes are observable in all natural and human phenomena. One of the affected phenomena by climate change is dust storms. Besides their short-term and long-term effects, these storms significantly influence air quality on both local and global scales. In recent decades, the frequency of dust storms has increased due to climate variations and human activities, and it is predicted that this increasing trend will continue in the future. Investigating the effects of climate change on dust storms in Southwest Asia, as one of the most significant dust storm hotspots globally, holds great importance. The objective of this research is to examine the impacts of climate change and forecast dust storms in Southwest Asia using the GRDL-ESM4 model from the CMIP6 model ensemble under the optimistic scenario (SSP1.2.6) during the near-future period (2021-2060).
Materials and methods: Southwest Asia is located in the global desert belt. The intensification of climate change in this region has distinct impacts on the trends of dust storms, especially mineral dust storms. Therefore, this study focuses on forecasting dust storms in Southwest Asia using the CMIP6 model ensemble, specifically the GFDL-ESM4 model, under the optimistic scenario (SSP1-2.6). The research methodology involves initially using a 40-year historical period (1975-2014) to analyze dust storm anomalies. Then, the CMIP6 model ensemble, specifically the GRDL-ESM4 model, is utilized to examine the dust storm trends until the end of the present century. Furthermore, the optimistic scenario (SSP1-2.6) is employed for the near-future forecasting period (2021-2060).
Results and discussion: The results show that the maximum amount of dust storms occurs during the summer and spring seasons. In the summer season, the significant increase in temperature and decrease in precipitation contribute to the highest level of dust storms. The spring season exhibits a high level of dust storms compared to other seasons, with northern latitudes having more dust storms than southern latitudes. The minimum dust storm occurrence is observed during the autumn and winter seasons. Autumn is characterized by decreasing temperatures and increasing precipitation processes, leading to a reduction in dust storm frequency. In the winter season, the semi-Arabian Peninsula, especially the eastern regions, experiences the highest dust storm occurrence. In the spring season, the eastern part of the Arabian Peninsula, during the summer season, the southeastern regions of the Arabian Peninsula and southeastern Iran, and during the autumn season, the northern half of Arabia and eastern Iran have the highest frequency of dust storms. According to the optimistic scenario, the summer and spring seasons have the highest dust storm occurrence. Furthermore, it is evident that the intensity of dust storm trends will be higher in the southeastern regions of the Arabian Peninsula, the Makran coasts, the northern half of Iran, northern Arabia, and between the rivers compared to other areas.
Conclusion: In general, southern latitudes experience higher levels of dust storms compared to northern latitudes. The primary center of dust storms is located over the Arabian Peninsula in early winter, gradually shifting towards the eastern regions. During this season, the center of dust storms moves from eastern Arabia to southeastern parts of the Arabian Peninsula and southeastern Iran.
کلیدواژهها [English]