نقش مواد آلی در چگونگی نهشت کانسار بوکسیتی دوپلان، استان چهارمحال بختیاری

نوع مقاله : علمی -پژوهشی

نویسندگان

گروه علوم‌ زمین، دانشکده علوم، دانشگاه شیراز

چکیده

کانسار بوکسیت دوپلان در زون زاگرس مرتفع بین دو سازند خانه­کت و نیریز قرار گرفته است. این نهشته 5 افق بوکسیتی دارد که به ترتیب از پایین به بالا شامل افق آهن­دار، رسی، اُاُلیتی، پیزولیتی و غنی از مواد آلی می­باشند. مطالعات کانی­شناسی شامل مطالعه­ میکروسکوپ نوری، الکترونی و طیف رامان نشان­دهنده­ حضور دیاسپور در افق پیزولیتی، اُاُلیتی و رسی و حضور پیریت، کائولینیت، ناکریت و بوهمیت در افق­های غنی از مواد آلی و غنی از آهن می­باشند. مطالعات ریز ریخت­شناسی نشان می­دهد که آهن شویی از فرایندهای مهم در تشکیل کانسار دوپلان می­باشد. نتایج تجزیه مواد آلی (TOC) نشان می­دهد که دو افق غنی از مواد آلی و غنی از آهن بالاترین میزان TOC و آهن را دارند. مهم­ترین ویژگی این دو افق فراوانی پیریت است. حضور کانی پیریت با محتوای مواد آلی بالا قابل تفسیر است. تشکیل پیریت، حاصل کاهیدگی باکتریایی سولفات به H2S در حضور مواد آلی است. توزیع مواد آلی در افق­های بوکسیتی نشان می­دهد که مواد آلی نقش مهمی در تحرک نسبی Al و Fe طی تشکیل بوکسیت دارند. به­طوریکه دو شرایط محیطی متفاوت در تشکیل کانسار بوکسیتی دوپلان حاکم بوده است: 1) محیطی که در آن قابلیت انحلال کانی­های آلومینیوم­دار بیشتر از آهن است (افق غنی از آهن، افق غنی از مواد آلی)، 2) محیطی که در آن قابلیت انحلال کانی­های Fe دار بیشتر از Al دار می­باشد (افق بوکسیت پیزولیتی، اُاُلیتی و رسی).

کلیدواژه‌ها


عنوان مقاله [English]

The role of organic matter on the mineralogical and geochemical characteristics of the ‎Dopolan‏ ‏bauxite deposit, Chaharmahal and Bakhtiari Province

چکیده [English]

Dopolan bauxite deposit is located in the high Zagros zone, between Khaneh-Kat and Neyriz ‎Formations. Dopolan bauxite consist of 5 separate layer bauxite, respectively from bottom to top ‎including, iron rich, clay bearing, oolitic, pisolitic and organic matter-rich bauxite. The aim of this ‎study is investigation on the role of organic matter in the mineralogy deposition of bauxite ‎horizons. Mineralogical studies‏ ‏inclusive light microscopy (reflected), electron microscopic (SEM) ‎and Raman spectroscopy, revealed presence of diaspore in pisolitic, oolitic, clay bauxitic horizons ‎and show presence of pyrite, kaolinite, nacrit, bohemite, minerals in organic matter rich and iron ‎rich bauxitic horizons. The micromorphelogical studies show that deferruginization is important ‎process in the deposit. Iron rich and organic rich bauxite horizons show highest values TOC and ‎Fe. The most specific feature of iron-rich and organic matter-rich bauxitic horizons is abundant ‎of pyrite. Present pyrite was explained by high content of organic carbon. The widespread ‎occurrences of pyrite in these horizons seem to be due to the sulfate reduction by bacteria in ‎relatively organic carbon-rich environment. Distribution of organic matter show that carbon ‎control mobilization of Fe and Al during bauxitization. Therefore two environmental condition can ‎be deduced in Dopolan deposit. 1) Environment that Al minerals more soluble than Fe minerals ‎‎2) Environment that Fe minerals more soluble than Al minerals. ‎

کلیدواژه‌ها [English]

  • Dopolan bauxite deposit
  • ‎‏ ‏Micromorphology
  • Geochemistry
  • organic matter
  1. منابع
  2. -احسان بخش، م. ح.، 1371. بررسی زمین‌شناسی اقتصادی بوکسیت منطقه‌ دوپلان، پایان‌نامه کارشناسی‌ارشد اقتصادی، دانشگاه شهید بهشتی تهران، 347 ص.
  3. -پرخیده، ه.، 1375. گزارش اکتشاف بخش شمالی کانسار بوکسیت دوپلان، سازمان صنایع و معادن اصفهان، 47 ص.
  4. -رحیم پور ‌بناب، ح. و اسماعیلی، د.، 1386. پتروگرافی و ژنز کانسار بوکسیت جاجرم، مجله‌ علوم دانشگاه تهران، جلد سی و سوم، شماره یک، ص 107-123.
  5. -خدادای، م.، 1392. کانی‌شناسی، زمین شیمی و خاستگاه کانسار بوکسیت دوپلان، چهار محال و بختیاری، پایان‌نامه کارشناسی‌ارشد اقتصادی، دانشگاه شیراز، 174 ص.
  6. -Bardossy, G., 1982. Karst bauxite, Development in Economic Geology 14, Elsevie, Amsterdam.
  7. -Bardossy, G. and Aleva, G.J.J., 1990. Lateritic bauxites, Elsevier, 624 p.
  8. -Baskar, S., Baskar, R. and Kaushik, A., 2003. Role of microorganisms in weathering of the Konkan-Goa laterite formation, Current Science, v. 85, p. 1129-1134.
  9. -Crinci, J. and Jurkowic, I., 1990. Rare earth elements in Triassic bauxites of Croatia, Yugoslavi, Travaux, v. 19, p. 239-248.
  10. -Delavigne, J.E., 1998. Atlas of micromorphology of mineral alteration and weathering Mineralogical association of Canada, 494 p.
  11. -Downs, R.T., 2006. The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals, - In: Proceedings of the 19th general meeting of the IMA, Kobe, Japan, p. 3 - 13.
  12. -Ehrlich, H.L. and Wickert, L.M., 1997. Bacterialaction on bauxites in columns fedwith full-strengthand dilute sucrose-mineral salts medium, In: Lortie L, Bedard P, Gould WD, eds, Biotechnology and the Mining Environment, SP 97–1, Ottawa, Canada: CANMET Natural Resources Canada, p. 74-89.
  13. -Ehrlich, H.L. and Newman, D., 2009. Geomicrobiology, Taylor and Francis Group, 605 p.
  14. -Ferenczi, P., 2001. Iron ore, manganese and bauxite deposits of the Northern Territory, Geological Survey of Canada, Report, v. 13. 113 p.
  15. -Graselli, J.G. and Bulkin, B.J. (eds), 1991. Analytical Raman Spectroscopy, John Wiley &. Sons, Inc., New York, 480 p.
  16. -Grocott, S. C., 1988. Bayer liquor impurities: measurement of organic carbon, oxalate and carbonate extraction from bauxite digestion, Light Metals, The Minerals, Metals and Materials Society, v. 15, p. 833-841.
  17. -Hao, X., Leung, K., Wang, R., Sun, W. and Li, Y., 2010. The geomicrobiology of bauxite deposits", Geoscience Frontiers, v. 1, p. 81-89.
  18. -Heim, C., 2010. An Integrated Approach to the Study of Biosignatures in Mineralizing Biofilms and Microbial Mats, Ph.D. Thesis, University of Gottingen, Germany, 175 p.
  19. -Kalaitzidis, S., Siavalas, G., Skarpelis, N., Araujo, V.C. and Christa, k., 2009. Late Cretaceous coal overlying Karstic bauxite deposits in the Parnassus- Ghiona vnit, Central Greece: caol characteristics and depositional environment, International Journal of Coal Geology, v. 81, p. 211-226.
  20. -Kalatha, S. and Economou-Eliopoulos, M., 2015. Framboidal pyrite and bacterio-morphic goethite at transitional zones between Fe–Ni-laterites and limestones: Evidence from Lokris, Greece, Ore Geology Reviews, v. 65, p. 413-425.
  21. -Komlossy, G.y., 1970. The Iszkaszentgyörgy bauxite (SE Bakony Mts., Hungary), Problems of genesis and mineral formation, Annales Instituti Geologici Publici Hungarici, v. 54, p. 347-358. ,
  22. -Laskou, M., 2005. Pyrite-rich bauxite from the Parnassos-Ghiona zone, Greece, In: MAO et al. (eds), 8th SGA Meeting, Mineral Deposits Research Meeting the Global Challenge Beijing, p. 1007-1010.
  23. -Laskou, M. and Economou-Eliopoulos, M., 2007. The role of microorganisms on the mineralogical and geochemical characteristics of the Parnassos-Ghiona bauxite deposits, Greece, Journal of Geochemical Exploration, v. 93, p. 67-77.
  24. -Liu, X., Wang, Q., Deng, J., Zhang, Q., Sun, S. and Meng, J., 2010. Mineralogical and geochemical investigations of the Dajia Salento-type bauxite deposits, western Guangxi, China, Journal of Geochemical Exploration, v. 105, p. 137-152.
  25. -Liu, X., Wang, Q., Feng, Y. and Cai, Z., 2013. Genesis of the Guangou karstic bauxite deposit in western Henan, China. Ore Geology Reviews, v. 55, p. 162–175.
  26. -MacLean, L.C.W., Pray, T.J., Onsted, T.C., Brodie, E.L., Hazen, T.C. and Southam, G., 2007. Mineralogical, chemical and biological characterization of an anaerobic biofilmcollected from a borehole in a deep gold mine in South Africa, Geophysical Journal of the Royal Astronomical Society, v. 24, p. 491-504.
  27. -Maksimovic, Z. and Panto, G., 1991, Contribution to the geochemistry of the rare earth elements in the karst–bauxite deposits of Yugoslavia and Greece, Geoderma, v. 51, p. 93-109.
  28. -Nemanich, R. J. and Solin, S. A., 1979. First- and second-order Raman scattering from finite-siz crystals of graphite, Physics, Review, B20, 392 p.
  29. -Norton, S.A., 1973. Laterite and bauxite formation, Economic Geology, v. 68, p. 353-361.
  30. -Patterson, S.H., 1967. Bauxite reserves and potential aluminum resources of the World, U.S. Geological Survey Bulletin, v.1228, 176 p.
  31. -Power, G. and Loh, J., 2010. Organic compounds in the processing of lateritic bauxites to alumina, Part 1: Origins and chemistry of organics in the Bayer process, Hydrometallurgy, v. 105, p. 1-29.
  32. -Power, G.P., 1991. The impact and control of organic compounds in the extraction of alumina from bauxite, Fifth Aus IMM Extractive Metallurgy Conference, Australian Institute of Mining and Metallurgy, Perth, Western Australia, p. 337-345.
  33. -Rijkeboer, A. and van der Meer, A.P., 1993. Bauxite roasting—an option to reduce the organic input to Bayer plant liquor, Third International Alumina Quality Workshop, Hunter Valley, NSW, Australia, p. 254-269.
  34. -Schroll, E. and Sauer, D., 1968. Beiträgezur Geochemie von Titan, Chrom, Nickel, Cobalt, Vandium und Molybdän in bauxitishcenGesteinen und das Problem der stoffichen Herkunft des Alumniums, Travax du l'ICSOBA, Zagreb, v. 5, p. 83-96.
  35. -Tuinstra, F. and Koenig, J. L., 1970. Raman spectrum of graphite, J. Chemistry and Physics, v. 53(3), p. 1126-1130.
  36. -Walkey, A. and Black, I.A., 1934. An examination of Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid titration method, Soil Science, v. 37, p. 29-38.
  37. -Zhang, Zh., Zhou, L., Yujiao, Li., Chengquan, Wu. and Zheng, Ch., 2013. The “coal–bauxite iron” structure in the ore-bearing rock series as a prospecting indicator for southeastern Guizhou bauxite mines, Ore Geology Reviews, v. 53, p. 145-158.