بررسی رابطه بین دمای پناهگاه هواشناسی با دمای اعماق مختلف خاک در شرایط رطوبتی هوا با استفاده از شبکه عصبی (مطالعه موردی: شهرستان ساری)

نوع مقاله : علمی -پژوهشی

نویسندگان

1 استادیار دانشگاه آزاد اسلامی واحد نور

2 اداره تحقیقات هواشناسی کشاورزی قراخیل قائم شهر

3 اداره تحقیقات هواشناسی کشاورزی آمل

چکیده

دمای خاک یکی از عوامل مهم در توسعه پایدار و کشاورزی است. هدف از این پژوهش بررسی دمای خاک در ایستگاه­های هواشناسی سینوپتیک ساری است. دوره آماری پژوهش از سال 2003 الی 2014 می­باشد. بانک اطلاعاتی پژوهش شامل دمای خاک در اعماق 5، 10، 20، 30، 50 و 100 سانتی­متری، دمای هوای خشک، رطوبت خاک و هوا در بازه زمانی فوق که توسط تجهیزات مورد استفاده در ایستگاه­های هواشناسی جمع­آوری شده است. برای برآورد مدل از روش شبکه­ عصبی استفاده شده است. نتایج نشان داده است که دمای خاک با دمای هوا رابطه مستقیم دارد ولی در عمق­های نزدیک به سطح این وابستگی بیشتر بوده است و دمای خاک با رطوبت هوا رابطه نوسانی دارد به­طوری که تا عمق 50 سانتیمتری افزایشی بوده ولی با افزایش عمق رابطه کاهشی دارد. هم­چنین رطوبت خاک نیز مورد بررسی قرار گرفت که نتایج نشان داده است در اعماق بالا این عامل تاثیر­گذار است.

کلیدواژه‌ها


عنوان مقاله [English]

Study of the relationship between temperature shelter With soil temperature at different depths In terms of humidity Using neural network Model (Case study: Sari)

چکیده [English]

Abstract
Soil temperature is the most important factor in sustainable development and agriculture. These factors are not controllable, but by examining the facts and figures it can be predictable and under control. The aim of this study was to evaluate soil temperature at synoptic stations in Sari, Mazandaran province. The study period is from 2003 to 2014. The database consisted of soil temperature at depths of 5, 10, 20, 30, 50 and 100 cm, dry air temperature, soil moisture and air in the above-mentioned period which is collected by the equipment used in meteorological stations. Neural network method is used to estimate the model. Results showed that soil temperature is directly related to air temperature But deep down near the surface of this dependency has been.and Soil temperature with air humidity has fluctuates. So that up to 50 cm rise but decreased with increasing depth. Soil moisture also examined and The results have shown that this agent is effective in high depths.

کلیدواژه‌ها [English]

  • : soil temperature-air temperature- soil moisture- sari- neural network Model
  1. -شریعتمداری، ز.، 1384. تعیین عمق نفوذ یخبندان در چند نمونه اقلیمی و تیپ خاکی ایران، پایان‌نامه کارشناسی‌ارشد گروه آبیاری بخش هواشناسی، دانشکده کشاورزی دانشگاه تهران.
  2. -علیزاده، ا.، 1383. " فیزیک خاک"، موسسه چاپ و انتشارات آستان قدس رضوی.
  3. -کارآموز، م. و عراقی نژاد، ش.، 1384. " هیدرولوژی پیشرفته"، دانشگاه صنعتی امیرکبیر (پلی‌تکنیک تهران)
  4. -نجفی مود، م.ح.، علیزاده، ا.، محمدیان، آ. و موسوی، ج.، 1387. بررسی رابطه دمای هوا و دمای اعماق مختلف خاک و برآورد عمق یخبندان (مطالعه موردی استان خراسان رضوی)، مجله آب و خاک (علوم و صنایع کشاورزی)، شماره 22 (2)، ص456-466.
  5. -جعفری گلستان، م.، رائینی سرجازوم، م. و تباراحمدی، ض.، 1386. برآورد دمای ژرفای خاک با بهره‌گیری از روش تجزیه منحنی و همبستگی‌های رگرسیونی برای شهر ساری، مجله علوم کشاورزی و منابع طبیعی، ویژه‌نامه زراعت و اصلاح، نباتات، شماره (5) 14، ص 112-113.
  6. -سبزی پرور، ع. ا.، طبری، ح. و آیینی، ع.، 1389. برآورد میانگین روزانه دمای خاک در چند نمونه اقلیمی ایران با استفاده از داده‌های هواشناسی. فصلنامه علوم و فنون کشاورزی و منابع طبیعی، شماره 52 (2)، ص 125-130.
  7. -Allen, D.M., Cannon, A.J., Toews, M.W. and Scibek, J., 2010. Variability in simulated recharge using different GCMs, water resources research, 46, W00F03.
  8. -Barnhart, C.J., Nimmo, F. and Travis, B.J., 2010. Martian post-impact hydrothermal systems incorporating freezing, Icarus, v. 208 (1), p. 101–117.
  9. -Kurylyk, B.L., MacQuarrie, K.T.B. and McKenzie, J.M., 2014. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory and emerging simulation tools, Earth-Science Reviews 138, p. 313- 334.
  10. -Bense, V.F., Kooi, H., Ferguson, G. and Read, T., 2012. Permafrost degradation as a control on hydrogeological regime shifts in a warming climate journal of geophysical research earth surface, v. 117, p. 30-36.
  11. -Bloomfield, J.P., Jackson, C.R. and Stuart, M.E., 2013. Changes in groundwater levels, temperature and quality in the UK over the 20th century: an assessment of evidence of impacts from climate change, Living with Environmental Change Report, UK (14 pp., Available at: http://nora.nerc.ac.uk/503271.
  12. -Bordoy, R. and Burlando, P., 2013. Bias correction of regional climate model simulations in a region of complex orography, journal of applied meteorology and climatology, v. 52 (1), p. 82–101.
  13. -Brunner, P. and Simmons, C.T., 2012. HydroGeoSphere: a fully integrated, physically based hydrological model, Groundwater 2 (50), 170–176. Cheng, G., Jin, H., 2013. Permafrost and groundwater on the Qinghai–Tibet plateau hydrogeology journal, v. 21 (1), p. 5–23.
  14. -Iwata, Y., Nemoto, M., Hasegawa, S., Yanai, Y., Kuwao, K. and Hirota, T., 2011. Influence of rain, air temperature and snow cover on subsequent spring-snowmelt infiltration into thin frozen soil layer in northern Japan, Journal of Hydrology, v. 401, p. 165–176.
  15. -Jacobs, A.F.G., Heusinkveld, B.G. and Holtslag, A.A.M., 2011. Long-term record and analysis of soil temperatures and soil heat fluxes in a grassland area, The Netherlands, Agricultural and Forest Meteorology, v. 151, p. 774–780.
  16. -Lawrence, D.M. and Slater, A.G., 2010. The contribution of snow condition trends to future ground climate, climate dynamics, v. 34, p. 969-9