بررسی پتانسیل عنصری با تکیه‌ بر روش‌های نوین تلفیق داده‌های ژئوشیمی و ژئوفیزیک هوایی در برگه 1:100،000 لاهرود (شمال‌غربی ایران)

نوع مقاله : علمی -پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد تهران‌شمال، تهران، ایران

2 گروه مهندسی نفت و معدن، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد تهران‌جنوب، تهران، ایران

چکیده

هدف از این پژوهش، شناسایی ناهنجاری­های عنصری با استفاده از ترکیب مدل فرکتالی1 (فرکتال، ساختاری هندسی است که با بزرگ کردن هر بخش از این ساختار به­نسبت معین، همان ساختار نخستین به­ دست آید؛ به ­بیان دیگر، فرکتال ساختاری است که هر بخش از آن با کل­ آن همانند است. فرکتال در بسیاری از ساختارهای طبیعی مثل سنگ­ها، برف، رسوب­گذاری، برگ و تنه درختان، DNA و غیره دیده می­شود. هندسه فرکتال یا هندسه بعد چهارم یا هندسه طبیعت در تضاد کامل با هندسه اقلیدسی بعدهای اول تا سوم می­باشد. درواقع هندسه فرکتال تعریفی از نظریه بی­نظمی یا آشوب است). عیار-تعداد و آنالیز فاکتوری مرحله­ای نمونه­های رسوبات آبراهه­ای با داده­های ژئوفیزیک هوابرد برگه 1:100،000 لاهرود بود. منطقه مورد مطالعه در نوار آتش­فشانی البرز-آذربایجان واقع است. تمام عناصر اخلال کننده (مولیبدن، برلیوم، جیوه، سرب، نقره، استرانسیوم، سلنیوم و بیسموت) پس از اعمال چهار مرحله آنالیز فاکتوری حذف شدند و عناصر ارسنیک، آنتیموان، قلع، تنگستن، کبالت، منگنز، روی، تیتانیوم، باریوم، نیکل، کروم، طلا، مس و بور در پنج گروه طبقه­بندی شدند؛ مس و طلا در گروه چهار از مرحله چهارم قرار گرفتند. نمودار عیار-تعداد امتیازهای فاکتوری ترسیم و مقادیر آن­ها به­منظور تهیه نقشه­های جوامع ژئوشیمیایی، تعیین شد. مناطق ناهنجار عناصر فلزی در بخش­های شمال­غرب، مرکز و جنوب­غرب منطقه قرار دارند که نشان­دهنده هم­بستگی با مناطق دگرسان شده، گسل­ها و توده­های نفوذی می­باشد. با استفاده از داده­های ژئوفیزیک هوایی و تهیه نقشه­های مربوط به آن، توده ژرف­سنگ در جنوب­غربی، که توجیه کننده دگرسانی­ها و در نتیجه، ناهنجاری­هاست و هم­چنین مناطق قابل پی­جویی منطقه لاهرود شناسایی شد.

کلیدواژه‌ها


عنوان مقاله [English]

The elemental potential study based on modern methods of geochemical and airborne geophysical data in Lahrud 1:100,000 sheet, NW Iran

نویسندگان [English]

  • Zahra Farahmandfar 1
  • Mohammad Reza Ja'fari 1
  • Peyman Afzal 2
  • Afshin Ashja Ardalan 1
1 Department of Geology, Faculty of Basic Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
2 Petroleum and Mining Engineering Department, Technical and Engineering Faculty, Islamic Azad University, South Tehran Branch, Tehran, Iran
چکیده [English]

IntroductionLahrud is situated in NW Iran, between 47º 30´ to 48º longitudes and 38º 30´ to 39º latitudes, based on the structural units this area is part of the Eocene age trending  Alborz-Azerbaijan magmatic belt .The volcanic rocks of Eocene age mainly comprise of alkaline series.Materials and Methods Fractal modeling has been widely used in various fields of earth sciences and mineral exploration since the 1980s. One of the most important methods is the Concentration-Number fractal method; this method is based on the inverse relationship between the concentration and the cumulative frequency of each concentration and higher concentrations. In 2003, about 600 samples of Lahroud 1: 100,000 sheet stream sediments were randomly sampled by the National Geological and Mineral Exploration Organization and analyzed by ICP-MS. In this study, classical statistics operations, factor analysis, fractal Concentration-Number of operations and element geochemical anomaly maps were prepared. Classical statistics have a structural weakness for not taking into account the spatial position of the data which causes systematic errors. Factor analysis is one of the most popular multivariate analyses, which is used as a powerful tool for visualizing large three-dimensional spatial data based on the variance and covariance matrices. In this method, a large set of geochemical variables are combined with several factors. The basis of the factor analysis work is, that after the initial stages of data preparation, at each stage, the elements that have a number higher than 0.6 should be selected and the rest of the elements should be removed.Results and Discussion Factor analysis was performed in SPSS software and had four stages; All disruptive elements (Mo, Be, Hg, Pb, Ag, Sr, Se, and Bi) were removed after four stages of factor analysis, and As, Sb, Sn, W, Co, Mn, Zn, Ti, Ba, Ni, Cr, Au, Cu and B were classified into five groups. Graph diagram of the C-N of invoice points was drawn and their values determined the maps of geochemical communities. The interpretation of airborne geophysical data is done both qualitatively and quantitatively. In interpreting this data, geological structures such as the location of intrusive masses, faults or hidden faults, contacts, special structures such as folds, various alteration zones and various lithologies and their changes are considered. The Oasis Montaj geophysical software offers a variety of filters and applications for analyzing and, interpreting aerial magnetic data. Geophysical surveys of the Lahrud area were performed on 48 flight lines, including longitude, latitude, and magnetic field for each point.ConclusionThe presence of Andesite and Andesite-basalt rocks on the surface (geological study of area) reinforces the possibility of the presence of dioritic intrusive mass. This, has caused some of the rocks around the intrusive mass and fractures to rise through the weak points around it, and it has flowed as lava on the earth's surface. Finally it has formed the Andesite rocks of the region. Due to the size, depth and alterations of the rocks around the southern intrusive mass of the region, this, type of rooted batolite was detected with a slope to the south. The presence of Sb in the southwestern region confirms the performance of a hydrothermal system; the system, rises through the existing faults and affects the alteration rocks, creating Alunitization, Kaolinitiezation and Silicification alterations in the southwest and center of the sheet. Most of the anomalies are around the intrusive mass south of the region, where hydrothermal fluids have caused alterations, followed by mineralization. Concentration-Number fractal calculations, step-by-step factor analysis, preparation of geochemical anomalies of Gold, Antimony and Copper elements, studies and preparation of geophysical maps indicate that the anomalies of the elements are significant. They correspond to alteration areas and intrusions. This, indicates a close and notable connection between the alterations, faults and, intrusive masses of the Lahrud 1:100,000 sheet with the anomaly of the elements, especially Au and Cu. Therefore, the best exploration items in this sheet are Gold and Copper.

کلیدواژه‌ها [English]

  • Elemental anomalies
  • Geochemistry
  • Airborne geophisics
  • NW Iran
  1. -اخوان اقدم، م.ر.، 1395. تفسیر داده‌های ژئوفیزیک هوایی براساس داده‌های 7500 متر در استان مرکزی: سازمان زمین‌شناسی و اکتشافات معدنی کشور، 34 ص.
  2. -افتخارنژاد، ج. و اسدیان، ع.، 1371. سن کمپلکس دگرگونی و اوفیولیتی اسالم-شاندرمن و ارتباط ژئودینامیکی آن با پالئوتتیس و پوسته اقیانوسی کاسپین: مجله علوم زمین، شماره 3، ص 4-15.
  3. -افضل، پ.، ۱۳۸۹. ارائه روش‌های فرکتالی سه-بعدی برای جدایش زون‌ها در کانسارهای پورفیری، رساله دکتری زمین‌شناسی اقتصادی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران.
  4. -باباخانی، ع. و حسین خان‌ناظر، ن.، 1370. نقشه زمین‌شناسی 1:100،000 لاهرود: سازمان زمین-شناسی کشور.
  5. -ترشیزیان، ح.، رفیق‌دوست، ی. و جوانبخت، م.، 1386. اکتشاف ژئوفیزیکی به روش مغناطیس-سنجی در منطقه آبریزو واقع در پهنه انارک، ایران مرکزی: سومین همایش زمین‌شناسی کاربردی و محیط‌زیست.
  6. -حسنی‌پاک، ع.ا.، 1389. زمین ‌آمار (ژئواستاتیستیک)، انتشارات دانشگاه تهران، چاپ سوم، 330 ص.
  7. -خلج‌معصومی، م.، لطفی، م.، معمار کوچه‌باغ، ا.، خاکزاد، ا. و افضل، پ.، 1393. روند کانی‌سازی عناصر پرتوزا و ارتباط آن‌ها با سریم و ایتریم با استفاده از داده‌های لیتوژئوشیمیایی در محدوده آنومالی پنج ساغند، فصلنامه علوم‌زمین، شماره 93، ص 201-210.
  8.  
  9.  
  10. -Afzal, P., Ahmadi, K. and Rahbar, K., 2017. Application of fractal-wavelet analysis for separation of Geochemical anomalies: Journal of African Earth Sciences v. 128, p. 27-36.
  11. -Afzal, P., Eskandarnejad Tehrani, M., Ghaderi, M. and Hosseini, M.R., 2016. Delineation of supergene enrichment, hypogene and oxidation zones utilizing staged factor analysis and fractal modeling in Takht-e-Gonbad porphyry deposit, SE Iran: J. Geochem. Explor., v. 161, p. 119-127.
  12. -Afzal, P., Khakzad, A., Moarefvand, P., Rashidnejad Omran, N., Esfandiari, B. and Fadakar Alghalandis, Y., 2010. Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran, Journal Geochemical Exploration, v. 104, v. 34-46.
  13. -Aghazadeh, M., Castro, A., Badrzadeh, Z. and Vogt, K., 2011. Post-collisional polycyclic plutonism from the Zagros hinterland, The Shaivar-Dagh plutonic complex Alborz belt, Iran: Geological Magazine v.148, p. 980-1008.
  14. -Aghazadeh, M., Castro, A., Omrani, N.R., Emami, M.H., Moinevaziri, H. and Badrzadeh, Z., 2010. The gabbro (shoshonitic)-monzonite-granodiorite association of Khankandi pluton, Alborz mountains, NW Iran: Journal of Asian Earth Sciences v. 38, p. 199-219.
  15. -Alavi, M., 1991a. Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran: Geological Society of American Bulletin, v. 103, p. 983-992.
  16. -Alavi, M., 1996. Tectonostratigraphy synthesis and structural style of the Alborz mountain system in northern Iran: Journal of Geodynamics, v. 21, p. 1-33.
  17. -Alberti, A.A., Comin-Chiaramonti, P., Sinigoi, S., Trieste, M., Nicoletti, B. and Petrucciani, C., 1980. Neogene and Quaternary volcanism in Eastern Azerbaijan (Iran): some K-Ar age determinations and geodynamic implications: Geolodische Rundschau, v. 69, p. 216-225.
  18. -Allen, M.B., Vincent, S.J., Alsop, G.I., Ismail-Zadeh, A. and Flecker, R., 2003. Late Cenozoic deformation in the South Caspian region: Effects of a rigid basement block within a collision zone: Tectonophysics, v. 366, p. 223-239.
  19. -Asadi, H.H., Kianpouryan, S., Lu, Y.J. and McCuaing, T.C., 2014. Eploratory data analysis and C-A fractal model applied in mapping multi-element soil anomalies for drilling: A case study from the Sari Gunay epithermal gold deposit, NW Iran: Journal of Geochemical Exploration, v. 145, p. 233-241.
  20. -Austin, J.R. and Blenkinsop, T.G., 2008. The Cloncurry Lineament: geophysical and geological evidence for a deep crustal structure in the Eastern Succession of the Mount Isa Inlier: Precambrian Research, v. 163, p. 50-68.
  21. -Austin, J.R. and Blenkinsop, T.G., 2009. Local to regional scale structural controls on mineralisation and the importance of a major lineament in the eastern Mount Isa Inlier, Australia, review and analysis with autocorrelation and weights of evidence: Ore Geology Reviews, v. 35, p. 298-316.
  22. -Azizi, H., Moinevaziri, H., Mohajjel, M. and Yagobpoor, A., 2006. P-T path in metamorphic rocks of the Khoy region (northwest Iran) and their tectonic significance for Cretaceous-Tertiary continental collision: Journal of Asian Earth Sciences, v. 27, p. 1-9.
  23. -Berberian, M. and King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran.
  24. -Betts, P.G. and Lister, G.S., 2002. Geodynamically indicated targeting strategy for shale-hosted massive sulfide Pb-Zn-Ag mineralisation in the Western Fold Belt, Mt. Isa terrane: Australian Journal of Earth Sciences, v. 49, p. 985-1010.
  25. -Bierlein, F.P., Murphy, F.C., Weinberg, R.F. and Lees, T., 2006. Distribution of orogenic gold deposits in relation to fault zones and gravity gradients: targeting tools applied to the Eastern Goldfields, Yilgarn Craton, Western Australia: Mineralium Deposita, v. 41, p. 107-126.
  26. -Buccianti, A. and Grunsky, E., 2014. Compositional data analysis in geochemistry: are we sure to see what really occurs during natural processes: Journal of Geochemical Exploration, v. 141, p.1-5.
  27. -Carranza, E.J.M., 2009a. Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of Exploration and Environmental Geochemistry, 11. Elsevier , 351 p.
  28. -Carranza, E.J.M., 2009b. Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features: Ore Geology Reviews, v. 35 p. 383-400.
  29. -Carranza, E.J.M., 2011. Analysis and mapping of geochemical anomalies using logratiotransformed stream sediment data with censored values: Journal of Geochemical Exploration, v. 110, p. 167-185.
  30. -Castro, A., Aghazadeh, M., Badrzadeh, Z. and Chichorro, M., 2013. Late Eocene-Oligocene postcollisional monzonitic intrusions from the Alborz magmatic belt, NW Iran, an example of monzonite magma generation from a metasomatized mantle source: Lithos, v. 180-181, p. 109-127.
  31. -Cooper, G.R.J. and Cowan, D.R., 2006. Enhancing potential field data using filters based on the local phase: Computers & Geosciences, v. 32, p. 1585-1591.
  32. -Davis, J.C., 2002, Statistics and data analysis in Geology (3th ed.), John Wiley & Sons Inc., New York, p. 342-353.
  33. -Deng, J., Wang, Q., Yang, L., Wang, Y., Gong, Q. and Liu, H., 2010. Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China: Journal of Geochemical Exploration, v. 105(3), p. 95-105.
  34. -Dilek, Y., Imamverdiyev, N. and Altunkaynak, S., 2010. Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint: International Geology Review, v. 52, p. 536-578.
  35. -Ferreira, F., de Castro, L., Bongiolo, A., de Souza, J. and Romeiro, M., 2011. Enhancement of the total horizontal gradient of magnetic anomalies using tilt derivatives: part II application to real data: SEG Technical Program Expanded Abstracts, p. 887-891.
  36. -Filzmoser, P., Hron, K. and Reimann, C., 2009. Principal components analysis for compositional data with outliers, Environmetrics, v. 20, p. 621-632.
  37. -Galoyan, G., Rolland, Y., Sosson, M., Corsini, M., Billo, S., Verati, C. and Melkonyan, R., 2009. Geochemistry and 40Ar/39Ar dating of Sevan Ophiolites, Lesser Caucasus, Armenia: Evidences for Jurassic Back-arc opening and hot spot event between the South Armenian Block and Eurasia: Journal of Asian Earth Sciences, v. 34, p. 135-153.
  38. -Golonka, J., 2004. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic, Tectonophysics,v. 381, p. 235-273.
  39. -Guest, B., Horton, B.K., Axen, G.J., Hassanzadeh, J. and McIntosh, W.C., 2007. Middle tolate Cenozoic basin evolution in the western Alborz mountains: implications for the onset of collisional deformation in northern Iran: Tectonics, v. 60(11), p. 1-26.
  40. -Hassanpour, S. and Afzal, P., 2013. Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran: Arab J Geosci., v. 6(3), p. 957-970.
  41. -Henson, P.A., Blewett, R.S., Roy, I.G., Miller, J. and Czarnota, K., 2010. 4D architecture and tectonic evolution of the Laverton region, eastern Yilgarn Craton, Western Australia: Precambrian Research, v. 183, p. 338-355.
  42. -Jebeli, M., Afzal, P., Pourkermani, M. and Jafarirad, A.R., 2018. Correlation between rock types and copper mineralization using fractal modeling in Kushk-e-Bahram deposit, Central Iran: Geopersia Journal, v. 8(1), p. 131-141.
  43. -Jolliffe, T., 2002. Principal component analysis, 2nd edn, Springer, New York, p. 1-487.
  44. -Journel, A.G. and Huijbregets, C.J., 1989. Mining geostatistics, ACADEMIC PRESS.
  45. -Kazmin, V.G. and Tikhonova, N.F., 2006. Late Cretaceous-Eocene Marginal Seas in the Black Sea Caspian Region: Paleotectonic Reconstructions, Geotectonics, v. 40(3), p. 169-182.
  46. -Li, C., Ma, T. and Shi, J., 2003. Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background: Journal of Geochemical Exploration, v. 77, p.167-175.
  47. -Majidi, B., 1981. The ultrabasic lava flows of Mashhad, North East Iran: Geological Magazine, v. 118(1), p. 49-58.
  48. -Mandelbrot, B.B., 1983. The fractal geometry of nature, Freeman, San Fransisco.mineralized zones in the Zaghia iron ore deposit, Central Iran, Journal of Geochemical Exploration, v. 122, p. 9-19.
  49. -Mao, Z., Peng, S., Lai, J., Shao, Y. and Yang, B., 2004. Fractal study of geochemical prospecting data in south area of Fenghuanshan copper deposite, Tongline Anhui: Journal of Earth Sciences and Environment, v. 26 (4), p. 11-14.
  50. -Meng, X. and Zhao, P., 1991. Fractal method for statistical analysis of geological data,Chinese Journal of Geosciences, v. 2, p. 207-211.
  51. -Moinevaziri, H., Khalili Marandi, SH. and Brousse, R., 1991. Importance doun volcanism potassique, au Miocene superier, en Azerbaijan, Iran: Comptes Rendus de l'Academie des Sciences, v. 313, p. 1603-1610.
  52. -Momeni, S., Shahrokhi, S.V., Afzal, P., Sadeghi, B., Farhadinejad, T. and Nikzad, M.R., 2016. Delineation of the Cr mineralization based on the stream sediment data utilizing fractal modeling and factor analysis in the Khoy 1:100,000 sheet, NW Iran: Bulletin of the Mineral Research and Exploration, v. 152, p. 143-151.
  53. -Neawsuparp, K., Charusiri, P. and Meyers, J., 2005. New processing of airborne magnetic and electromagnetic data and interpretation for subsurface structures in the Loei area, Northeastern Thailand: ScienceAsia, v. 31, p. 283-298.
  54. -Olea, R.A., 1999. Geostatistics for engineers and earth scientists, Kluwer Academic Publishers, 303 p.
  55. -Pazand, K., Hezarkhani, A., Ataei, M. and Ghanbari, Y., 2011. Application of multifractal modeling technique in systematic geochemical stream sediment survey to identify copper anomalies: a case study from Ahar, Azarbaijan, Northwest Iran: Chem Erde, v. 71, p. 397-402.
  56. -Rantitsch, G., 2000. Application of fuzzy clusters to quantify lithological background concentrations in stream-sediment geochemistry: Journal of Geochemical Exploration, v. 71, p. 73-82.
  57. -Reimann, C. and Garrett, R.G., 2005. Geochemical background-concept and reality: Sci. Total Environ., v. 350(1-3), p. 12-27.
  58. -Reimann, C., Filzmoser, P. and Garrett, R.G., 2005. Background and threshold: critical comparison of methods of determination, Science of the Total Environment Journal, v. 346, p. 1-16.
  59. -Rezaei, S., Lotfi, M., Afzal, P., Jafari, M.R. and Shamseddin Meigoony, M., 2015. Delineation of Cu prospect utilizing multifractal modeling and stepwise factor analysis in Noubaran 1:100,000 sheet, Central of Iran: Arab J Geosci, v. 8, p. 7343-7357.
  60. -Rolland, Y., Sosson, M., Adamia, SH. and Sadradze, N., 2011. Prolonged Variscan to Alpine history of an active Eurasian margin (Georgia, Armenia) revealed by 40Ar/39Ar dating: Gondwana Research, v. 20, p. 798-815.
  61. -Sengör, A.M.C., 1990. Plate tectonics and orogenic research after 25 years: A Tethyan perspective: Earth-Science Reviews, v. 27, p. 1-201.
  62. -Shafaii Moghadam, H., Ghorbani, G., Zakikhedr, G., Fazlnia, N., Chiaradia, M., Eyuboglu, Y., Santosh, M., Galindo Francisco, C., Lopez Martinez, M., Gourgaud, A. and Arai, S., 2013. Late Miocene K-rich volcanism in the Eslamieh Peninsula (Saray), NW Iran: implications for geodynamic evolution of the Turkish-Iranian high plateau: Gondwana Research, v. 26, p. 1028-1050.
  63. -Shahbazi Shiran, H. and Shafaii Moghadam, H., 2010. Geochemistry and petrogenesis of Paleocene-Eocene shoshonitic lavas in Lahrud region, NW of Iran: 6th Symposium of the International Geological Correlation Programme Project 516 (IGCP516) Geological Anatomy of East and South Asia, Kuala Lumpur, Malaysia.
  64. -Shamseddin Meigoony, M., Afzal, P., Gholinejad, M., Yasrebi, A.B. and Sadeghi, B., 2014. Delineation of geochemical anomalies using factor analysis and multifractal modeling based on stream sediments data in Sarajeh 1:100,000 sheet, Central Iran: Arabian Journal of Geosciences, v. 7, p. 5333-5343.
  65. -Sheikholeslami, M.R. and Kouhpeyma, M., 2012. Structural analysis and tectonic evolution of the eastern Binalud Mountains, NE Iran: Journal of Geodynamics, v. 61, p. 23-46.
  66. -Sillitoe, R.H., 2000. Role of gold-rich porphyry models in exploration, in S. G. Hagerman, and P. H. Brown, eds., Gold in 2000: Reviews in Economic Geology, v. 13, p. 311-346.
  67. -Sosson, M., Rolland, Y., Muller, C., Danelian, T., Melkonyan, R., Kekelia, S., Adamia, S., Babazadeh, V., Kangarli, T., Avagyan, A., Galoyan, G. and Mosar, J., 2010. Subductions, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights: Geological Society, London, p. 329-352.
  68. -Sudi Ajirlu, M. and Moazzen, M., 2014. Role of the Allahyarlu ophiolite in the tectonic evolution of NW Iran and adjacent areas (Late Carboniferous-Recent): Central European Geology, v. 57(4), p. 363-383.
  69. -Turcotte, D.L., 1997. Fractal and chaos in geology and geophysics, University Press, Cambridge.
  70. -Turcotte, D.L., 1986. A Fractal Approach to the Relationship between Ore Grade and Tonnage, Economic Geology, v. 18, p. 1525-1532.
  71. -Verduzco, B., Fairhead, J.D., Green, C.M. and MacKenzie, C., 2004. New insights into magnetic derivatives for structural mapping: The Leading Edge, v. 23, p. 116-119.
  72. -Yousefi, M., Kamkar-Rouhani, A. and Carranza, E.J.M., 2012. Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping: Journal of Geochemical Exploration, v. 115, p. 24-35.
  73. -Zuo, R., Cheng, Q. and Xia, Q., 2009. Application of fractal models to characterization of vertical distribution of geochemical element concentration: Journal of Geochemical Exploration, v. 102 (1), p. 37-43.
  74. -Zuo, R., 2011a. Identifying geochemical anomalies associated with Cu and Pb-Zn skarn mineralization using principal component analysis and spectrum-area fractal modeling in the Gangdese Belt, Tibet (China): J Geochem Explor., v. 111, p. 13-22.
  75. - Zuo, R., 2014. Identification of geochemical anomalies associated with mineralization in the Fanshan district, Fujian, China: Journal of Geochemical Exploration, v. 139, p. 170-176.
  76. -Zuo, R. and Wang, J., 2016. Fractal/multifractal modeling of geochemical data, A review: Journal of Geochemical Exploration, v. 164, p. 33-41.
  77. -Zuo, R., Xia, Q. and Wang, H., 2013a. Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization: Applied Geochemistry, v. 28, p. 202-211.
  78. -Zuo, R., Xia, Q. and Zhang, D., 2013b. A comparison study of the C-A and S-A models with singularity analysis to identify geochemical anomalies in covered areas: Applied Geochemistry, v. 33, p. 165-172.