تحلیل خطر زلزله احتمالی شهر اردبیل با استفاده از نرم‌افزار Ez-Frisk

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زمین‌شناسی، دانشکده علوم، دانشگاه ارومیه، ارومیه، ایران

چکیده

شهر اردبیل، توسط گسل­های زیادی از جمله گسل لرزه­ای آستارا احاطه شده است که در طول تاریخ، زلزله­های متعددی با عمق کانونی کم و نزدیک سطح زمین، در امتداد آن رخ داده است. در این پژوهش، با استفاده از نقشه­های زمین­شناسی و بر مبنای گسل­های موجود، 7 چشمه خطی و 23 چشمه پهنه‌ای مشخص شده است. همچنین، از داده­های زلزله­های ثبت شده دستگاهی و نرم­افزارهای: Matlab، Zmap، Kijko و Ez-frisk استفاده شده است. نمودارهای رسم شده از داده­های زلزله، نشانگر افزایش دوره بازگشت زلزله­ها، با افزایش بزرگا می­باشد لذا احتمال رویداد زلزله­ در یک بازه زمانی مشخص، کاهش می‌یابد. به­طور مثال در بازه زمانی 100 ساله، احتمال رویداد زلزله­ با بزرگی 6، حدود 90٪ است. نقشه خطر زلزله برای  PGA(بیشترین شتاب زمین) روی سنگ بستر با 1٪ میرایی برای دوره بازگشت 50 سال و 475 سال در مجموعه نقاط شبکه‌بندی شده به ترتیب در فواصل °1/0 ×°1/0 و °05/0°×05/0 انجام شد. نتایج نشان می­دهند که مقادیر شتاب در این محدوده برایPGA  از 19/0 در شمال تا 21/0 در جنوب‌باختری متغیر است. با توجه به شتاب ناشی از زلزله احتمالی تعیین شده برای محدوده شهر اردبیل، این ناحیه به 4 ریزپهنه تقسیم شده است. با توجه به اینکه مقادیر شتاب در سراسر هر پهنه تعیین شده یکسان است؛ بنابراین می‌توان شهر اردبیل را یکی از شهرهای با خطر متوسط به لحاظ لرزه­خیزی، معرفی نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Probabilistic seismic hazard analysis (PSHA) of the Ardabil city using Ez-Frisk

نویسندگان [English]

  • Akram Alizadeh
  • Raziyeh Safari
  • Sahar Golestani
Department of Geology, Faculty of Sciences, Urmia University, Urmia, Iran
چکیده [English]

Introduction
The city of Ardabil is surrounded by faults, including the large seismic fault of Astara, which throughout seismic history of the region, several earthquakes have occurred along that. The focal depth of most earthquakes is low and close to the surface (5 to 30 km) at Ardabil. In this research, 7 linear sources and 23 regional sources have been identified. After aggregating historical and instrumental earthquake information, the reliability and completeness of the catalog should be evaluated. Due to the lack of reports of small earthquakes in historical data and the new periods of instrumental data, there is always an incomplete seismic catalog for a region. Because the existing catalog covers a long period of time, it contains temporal and spatial heterogeneities. The Stepp method is used to calculate the completeness of the catalog. Most earthquakes in this region have a depth of less than 40 and according to the cumulative distribution diagram, also most earthquakes have a focal depth of less than 20 km.
Materials and methods
To carry out this research, the recorded earthquake data of the region taken from 4 sites IIEES, ISC, NEIC and University Geophysics Tehran, and Matlab, Zmap, Kijko and Ez-frisk software were used. Seismic device data used in the region includes details related to the earthquake spring, such as: date, time, latitude and longitude, magnitude and related seismic information, which are used to determine the seismic source of the faults. Data analysis for earthquake risk has been done using Ez-frsik software. In this study, the earthquake catalog for northwestern Iran has been examined in three-time series:
A: historical earthquakes (period before 1900 AD); B: Systematic earthquakes of the first period (1900 to 1963) and C: Systematic earthquakes of the second period (1963 to 2020).
Results and discussion
Kijko and Sellevoll method was used to determine the seismicity parameters of Ardabil region. This method has useful capabilities in using the list of heterogeneous earthquakes which is consistent with the characteristics of seismic data of Iran. The functions used in the Kijko program include the distribution of final values for earthquakes before the 20th century, which are often large but with high error, and the Gutenberg-Richter function for recorded earthquakes and using the statistical method of maximum likelihood estimation. In this method, it is also possible to simultaneously use historical and recorded earthquakes by making appropriate classifications by considering the magnitude error, threshold magnitude, and maximum magnitude differently for each category. It is also possible to somehow include the effect of seismic absences or lack of information in the calculations. The estimated seismicity parameters, including the maximum magnitude of the earthquake (Mmax), the coefficient β and the annual volume λ in the 100 km area using the Kijko method, are:
Mmax=7.7, β=1.86, λ=0.9
The probability of the event or return period of earthquakes is another parameter that are calculated by this software. The return period increases greatly with the increase and the probability of an earthquake event decreases in a certain period of time. For example, in a 100-year period, the probability of an earthquake with a magnitude of 6 is 90%.
Conclusion
Graphs show an increase in the return period of earthquakes, so the probability of an earthquake event in a certain period of time decreases. Earthquake risk map for PGA was performed on bedrock with 1% damping for a return period of 475 years in a set of networked points at 0.05 ° × 0.05 intervals. According to the acceleration set for the city of Ardabil, this area is divided into 4 micro-zones. The results show that the acceleration values ​​in this range for PGA vary from 0.19 in the north to 0.21 in the southwest. It should be noted that the acceleration values ​​are the same throughout each designated area, so the city of Ardabil can be introduced as one of the cities with moderate risk in seismic activity.

کلیدواژه‌ها [English]

  • Ardabil
  • Iran
  • PSHA
  • Astara Fault
  • Ez-Frisk
-اسفندیاری درآباد، ف.، غفاری گیلانده، ع. و لطفی، خ.، 1393. بررسی توان لرزه­زایی گسل­ها و برآورد تلفات انسانی ناشی از زلزله در مناطق شهری مطالعه موردی: شهر اردبیل، پژوهش­های ژئومورفولوژی کمی، سال 2، شماره 4، ص 17-36.
-اسفندیاری درآباد، ف.، غفاری گیلانده، ع. و لطفی، خ.، 1394. بررسی لرزه زمین ساخت و لرزه­خیزی در محدوده شهر اردبیل The1st International Congress on Earth, Space & Clean Energy.
-خدابنده، ا.، امینی فضلی، ع. و امامی، م.ه.، 1376. نقشه زمین­شناسی چهارگوش اردبیل، مقیاس 1:100000، سازمان زمین­شناسی و اکتشافات معدنی کشور.
-زارع، م. و کامران زاد، ف.، 1393. پراکندگی لرزه­خیزی در ایران نشریه تحلیل فضایی مخاطرات محیطی، سال 1، شماره پیاپی 6، ص 39-58.  
-لطفی، خ.، غفاری گیلانده، ع. و اسفندیاری درآباد، ف.، 1393. ارزیابی آسیب پذیری شهرها از گسل‌های پیرامونی با استفاده از روش TOPSIS در محیط GIS مطالعه موردی: (شهر اردبیل)، مجله مخاطرات محیط طبیعی، سال 3، شماره 4، ص 17-35.
-موسوی بفروئی، ح.، میرزائی، ن.، شعبانی، ا. و اسکندری قادی، م.، 1393. پهنه­بندی خطر زمین­لرزه در ایران و برآورد مقادیر بیشینه شتاب برای مراکز استان­ها، مجله فیزیک زمین و فضا، شماره 40، ص 15-38.
 
 
 
-Abrahamson, N.A. and Silva, W.J., 2008. Summary of the Abrahamson and Silva NGA ground-motion relations, Earthquake Spectra: v. 24(1), p. 67-97.
https://doi.org/10.1193/1.2924360
-Ambraseys, N.N. and Jackson, J.A., 1998. Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region: Geophysical Journal International, v. 133, p. 390-406.
-Behzadafshar, K., Abbaszadeh Shahri, A. and Mansouri, R., 2012. Seismic hazard assessment in north west of Iran by using EZ-Frisk software (probabilistic method): Journal of the Earth, v. 7 (24), p. 161-178.
-Boore, D.M.,  Joyner, W.B. and Fumal, T.E., 1997.  Equations for Estimating Horizontal Response Spectra and Peak Acceleration from Western North American Earthquakes: A Summary of Recent Work: Seismological Research Letters, v. 68(1), p. 128-153.
-Boore, D.M. and Atkinson, G.M., 2008. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s: Earthquake Spectra, v. 24(1), p. 99-138.
-Campbell, K.W. and Bozorgnia, Y., 2008. NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s: Earthquake Spectra, v. 24 (1), p. 139-171.
-Das, R., Wason, H.R. and Sharma, M.L., 2011. Global regression relations for conversion of surface wave and body wave magnitudes to moment magnitude: Natural Hazards, v. 59, p. 801-810.
-Gardner, J.K. and Knopoff, L., 1974. Is the sequence of earthquake in southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, v. 64 (5), p. 1363-1367.
-Ghasemi, M.R., 2016. Surface ruptures of the Iranian earthquakes 1900-2014: Insights for earthquake fault rupture hazards and empirical relationships: Earth-Science Reviews, v. 156, p. 1-13. https://doi.org/10.1016/j.earscirev.2016.03.001
-Jarahi, H., 2017. PSHA Study Using EZ-Frisk Software Case Study Baychebaq Dam Site: Current Research in Geosciences, v. 7(2), p. 37-46.
https://doi.org/10.3844/ajgsp.2017.37.46
-Karimiparidari, S., Zare, M., Memarian, H. and Kijko, A., 2013. Iranian earthquakes, a uniform catalog with moment magnitudes: Journal of Seismology, v. 17, p. 897-911.
-Kasahara, H. and Narita, S., 1985. Practical multiprocessor scheduling algorithms for efficient parallel processing: Systems and computers in Japan, v. 16, p. 11-16.
-Kijko, A. and Sellevoll, M.A., 1992. Estimation of earthquake hazard parameters from incomplete data files. Part Π. Incorporation of magnitude hetregenity: Bulletin of the Seismological Society of America, v. 82, p. 120-134.
-Mirzaei, N., Gao, M. and Chen, Y.T., 1997. Seismicity in major seismotectonic provinces of Iran: Earthquake Research in China, v. 11, p. 351-361.
-Nowroozi, A., 1985. Empirical relations between magnitude and fault parameters for earthquakes in Iran: Bulletin of the Seismological Society of America, v. 75 (5), p. 1327-1338.
-Sawires, R., Pelaez, J. and Hamdache, M., 2020. Probabilistic Seismic Hazard Assessment for United Arab Emirates, Qatar and Bahrain: Applied Sciences, v. 10, 7901. https://doi.org/10.3390/app10217901
-Shahvar, M.P., Zare, M. and Castellaro, S., 2013. A Unified Seismic Catalog for the Iranian Plateau (1900–2011): Seismological Research Letters, v. 84, p. 233-249.
-Thomas, P., Wong, I. and Abrahamson, N., 2010. Verification of probabilistic seismic hazard analysis software programs. Pacific Earthquake Engineering Research Center. College of Engineering. University of California, Berkeley. Report 106.
-Wells, D.L. and Coppersmith, K.J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area and Surface Displacement: Bulletin of the Seismological Society of America, v. 84 (4), p. 974-1002.
-Yilmaz Ozturk, N., 2008. Probabilistic seismic hazard analysis: A sensitivity study with respect to different models, Thesis submitted to Doctor of Philosophy in Civil Engineering Department, Middle East Technical University, 285 p.