استخراج خطواره‌ها با استفاده از داده‌های ماهواره لندست 8 در پهنه برشی سقز- بانه با تأکیدی بر کانه‌زایی طلا

نوع مقاله : علمی -پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم، دانشگاه بوعلی سینا، همدان، ایران

2 گروه مهندسی معدن، دانشکده علوم پایه، دانشگاه کردستان، سنندج، ایران

چکیده

منطقه مورد مطالعه در جنوب‌غرب سقز و بخشی از زون ساختاری سنندج- سیرجان است. این منطقه شامل تعدادی محدوده‌ی کانه‌‌زایی طلا به اسامی قلقله، قبغلوجه، کرویان، حمزه قرنین، قره‌چر و کسنزان است. هدف از انجام این پژوهش، بررسی راستای گسل‌ها و ارتباط آن‌ها با مناطق کانه‌زایی به عنوان معیاری برای اکتشافات آتی است. در این پژوهش با استفاده از تصاویر ماهواره‌ای لندست 8، گسل‌های منطقه با سه روش دستی، اتوماتیک و نیمه اتوماتیک استخراج گردید. در استخراج خطواره‌ها به صورت دستی از چهار روش رایج عملیات فیلتر، مؤلفه‌‌های اصلی، نسبت باندی و ترکیب رنگی استفاده شد، و با استفاده از نتایج حاصل از چهار روش، یک نقشه خطواره تهیه شد. در استخراج خطواره‌ها به صورت اتوماتیک، از الگوریتم رایج Hough transform استفاده شد. در بررسی حاضر، از باند 4 ماهواره لندست 8 که در این باند عوارض زمین‌شناسی مانند انواع سنگ‌ها، مواد معدنی، پوشش گیاهی و غیره قابل تشخیص است، استفاده شد. در روش نیمه اتوماتیک پس از استخراج خطواره‌ها به روش اتوماتیک، خطواره‌های مرتبط به عوارض مورفولوژیکی یا انسانی به صورت دستی حذف شده و بعضی عارضه‌های خطی اضافه شد. نتایج این پژوهش نشان می‌دهد که سه راستای گسلی در منطقه مورد مطالعه شناسایی شد. راستای غالب گسل‌ها، شمال‌شرق-جنوب‌غرب است که بخشی از سنگ‌های میزبان کانه‌زایی طلا را در بر می‌گیرد. دومین راستا، راستای شمال‌غرب-جنوب‌شرق است که به موازات راستای غالب زاگرس است و شامل گسل‌های راندگی اصلی در منطقه است. سومین راستا، شرقی-غربی است و بخشی از کانه‌زایی طلا و رخداد دگرشکلی شکنا تا شکل‌پذیر را شامل می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Lineament extraction using lansat-8 satellite data in the Saqqez-Baneh shear zone with emphasis on gold mineralization

نویسندگان [English]

  • Narges Daneshvar 1
  • Mohammad Maanijou 1
  • Hosein Azizi 2
  • Tayebeh Ramezani 1
1 Department of Geology, Bu-Ali Sina University, Hamedan, Iran
2 -Department of Mining Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
چکیده [English]

IntroductionThe purpose of this study is to apply remote sensing technique to extract lineaments in the Saqqez-Baneh shear zone. In this study, lineaments were extracted in three manual, automatic and semi-automatic methods and their density and direction as well as their relationship with gold mineralization were investigated.Materials and methodsIn this study, the extraction of the lineaments was performed in two methods, manual and automatic. Then, on the basis that the semiautomatic method has a better advantage than the other two methods, in this research, after extracting the lineaments automatically, the lineaments related to the morphological or human features are removed manually and some lineament are added based on our investigation. In this study, Landsat 8 satellite images, taken on 16/8/2016 in 168 pass and 35 row, were used. Various software including PCI Geomatica (version 2015), Envi (version 4.8), Arc GIS (version 10.3.1) and (rock version 16) were used during this study. Principal component analysis was performed by Envi software and its output image was imported into PCI Geomatica software for extraction of lineaments. Then extracted lineaments were investigated in Arc GIS software and finally the density and direction of the lineaments were plotted by Rock Work software.Results and discussionIn this study, three methods were used to evaluate the extracted lineaments. (1) Lineament density analysis, (2) lineament length analysis, and (3) lineament orientation analysis. The density of lineaments is mostly concentrated in the center of the study area and in the north, west and southwest of Baneh. The density of faults is higher in the center of the study area and in the north, west and southwest Baneh city. Fault, causes pass ways for hydrothermal fluid, which is one of the effective factors in mineralization. The highest densities of lineaments coincide in the south, west, and northwest of the region, which include dextral faults. The rose diagrams show that there are three directions in the study area. The dominant fault zone is northeast-southwest, which include parts of the host rocks of gold mineralization. These shear zones comprise a range of ductile to brittle structures that are generally reverse and also are the longest lineaments. These faults usually displace Precambrian on Paleozoic units in southwest Saqqez, and are an indicator for subsequent local-scale exploration, especially in the intersections of the EW fault systems with NW-SE directions. Most of the gold mineralization in southwestern Saqqez (eg Qolqoleh, Kervian, Qabaghlojeh and Kasnazan) is related to this fault system. The second is the northwest-southeast direction, which is parallel to the prevailing trend of Zagros fault and contains major thrust faults in the area, which cause older rocks to over thrust on younger formations. The third is the east-west direction, which includes part of the gold mineralization and the occurrence of a brittle to ductile deformation.ConclusionThe results of this study indicate that by using semi-automatic method, faults in this area can be extracted with appropriate accuracy. Fault densities are higher in the center of the study area and in the north, west and southwest of Baneh city, and cause pass ways for hydrothermal fluids, which is one of the effective factors in mineralization. The highest densities of lineaments coincide in the south, west, and northwest of the region, which include dextral thrust, which cause older rocks to over thrust on younger formations. Three major faults were identified in the area. The fault direction and its relation to mineralization have been studied and the results show that the most dominant fault is northeast-southwest which comprises part of the host rocks of gold mineralization. The second, northwest-southeast direction contains thrusts and revers faults parallel to prevailing trends of Zagros fault, and the third is the east-west direction that contains .part of the gold mineralization

کلیدواژه‌ها [English]

  • Lineament extraction
  • remote sensing
  • Saqqez- Baneh
  • Gold mineralization
  1. -باباخانی، ع.، حریری، ع. و فرجندی، ف.، 1382. نقشه زمین‌شناسی ورقه سقز با مقیاس 1:100000، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
  2. -تاج‌الدین، ح.، 1390. عوامل کنترل‌کننده کانی‌زایی طلا در سنگ‌های دگرگونه منطقه سقز- سردشت شمال باختر پهنه دگرگونه سنندج- سیرجان، رساله دکتری، دانشگاه تربیت مدرس، 392 ص.
  3. -دانشور، ن.، 1397. ژئوشیمی و ژئودینامیک کانی‌زایی طلا در جنوب غرب سقز، رساله دکتری، دانشگاه بوعلی سینا، 250 ص.
  4. -علی‌پور، ر.، صدر، ا.ح. و ایزدی، م.، 1398. تحلیل خطواره‌ها و شکستگی‌های مرتبط با پهنه گسلش صحنه با استفاده از تکنیک‌های دورسنجی و فرکتال (باختر ایران)، پژوهش‌های دانش زمین، شماره‌ی 37، ص 186-205.
  5. -عمرانی، ج. و خبازنیا، ع.، 1382. نقشه زمین-شناسی 1:10000 ورقه آلوت، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
  6. -معانی جو، م. و دانشور، ن.، 1398. ژئوشیمی پیریت و ژنز کانی‌سازی طلا در سقز، یازدهمین همایش انجمن زمین‌شناسی اقتصادی ایران، دانشگاه شهید چمران اهواز، صفحات 1-8.
  7. -میزابابایی، غ.، شهاب‌پور، ج. و حیات‌الغیب، س.م.، 1396. بررسی کنترل ساختاری خطواره‌ها به توزیع کانسارها و نشانه‌های معدنی مس با کاربرد فاکتور خطوارگی در نیمه جنوبی کمربند مس کرمان، پژوهش‌های دانش زمین، شماره‌ 30، صفحه 35-48.
  8. -نوگل سادات، م.ع. و هوشمندزاده، ع.، 1372. نقشه زمین‌شناسی 1:250000 بانه- مریوان، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
  9.  
  10.  
  11. -Aliyari, F., Rastad, E. and Mohajjel, M., 2012. Gold Deposits in the Sanandaj–Sirjan Zone: Orogenic Gold Deposits or Intrusion‐Related Gold Systems?: Resource Geology, v. 62, p. 296-315.
  12. -Aliyari, F., Rastad, E. and Zengqian, H., 2007. Orogenic gold mineralization in the Qolqoleh deposit, northwestern Iran: Resource Geology, v. 57, p. 269-282.
  13. -Aliyari, F., Rastad, E., Goldfarb, R.J. and Sharif, J.A., 2014. Geochemistry of hydrothermal alteration at the Qolqoleh gold deposit, northern Sanandaj–Sirjan metamorphic belt, northwestern Iran: Vectors to high-grade ore bodies: Journal of geochemical exploration, v. 140, p. 111-125.
  14. -Aliyari, F., Rastad, E., Mohajjel, M. and Arehart, G.B., 2009. Geology and geochemistry of D–O–C isotope systematics of the Qolqoleh gold deposit, Northwestern Iran: Implications for ore genesis: Ore Geology Reviews, v. 36(4), p. 306-314.
  15. -Alonso-Contes, C.A., 2011. Lineament mapping for groundwater exploration using remotely sensed imagery in a karst terrain: Rio Tanama and Rio de Arecibo basins in the northern karst of Puerto Rico, Michigan Technological University.
  16. -Amer, R., Kusky, T. and El Mezayen, A., 2012. Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt: Advances in Space Research, v. 49, p. 121-134.
  17. -Casas, A.M., Cortes, A.L., Maestro, A., Soriano, M.A., Riaguas, A. and Bernal, J., 2000. LINDENS: a program for lineament length and density analysis: Computers & Geosciences, v. 26, p. 1011-1022.
  18. -Corgne, S., Magagi, R., Yergeau, M. and Sylla, D., 2010. An integrated approach to hydro-geological lineament mapping of a semi-arid region of West Africa using Radarsat-1 and GIS: Remote Sensing of Environment, v. 114, p. 1863-1875.
  19. -Crippen, R.E., 1988. The dangers of underestimating the importance of data adjustments in band ratioing: Remote Sensing, v. 9, p. 767-776.
  20. -Daneshvar, N., Maanijou, M., Azizi, H. and Asahara, Y., 2018. Study of the zircon morphology and internal structures as a tool for constraining magma source: example from granitoid bodies in the northern Sanandaj Sirjan zone (SW Saqqez): Geopersia, v. 8, p. 245-259.
  21. -Faure, S., 2001. Analyse des lineaments geophysiques en relation avec les mineralisations en or et metaux de base de l’Abitibi: Projet, 03A
  22. -Geomatics, P.C.I. and Version, O.O.S.E., 2001. 8.2 The User's Manual, Richmond Hill.
  23. -Ghasemi, A. and Talbot, C.J., 2006. A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran): Journal of Asian Earth Sciences, v. 26, p. 683-693.
  24. -Greenbaum, D., 1985. Review of remote sensing applications to groundwater exploration in basement and regolith.
  25. -Hashim, M., Ahmad, S., Johari, M.A.M. and Pour, A.B., 2013. Automatic lineament extraction in a heavily vegetated region using Landsat Enhanced Thematic Mapper (ETM+) imagery: Advances in Space Research, v. 51, p. 874-890.
  26. -Hobbs, W.H., 1912. Earth features and their meaning: an introduction to geology for the student and the general reader: The Macmillan Company, New York, 347 p.
  27. -Hung, L.Q., Batelaan, O. and De Smedt, F., 2005. Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery, Case study: Suoimuoi tropical karst catchment, Vietnam, In Remote Sensing for Environmental Monitoring, GIS Applications, and Geology V (Vol. 5983, p. 59830T): International Society for Optics and Photonics.
  28. -Jensen, J.R., 1996. Introductory Digital Image Processing”, Prentice Hall Series in Geographic Information Science: New Jersey, 316 p.
  29. -Kocal, A., 2004. A methodology for detection and evaluation of lineaments from satellite imagery: The Graduate School of Natural and Applied Sciences of Middle East Technical University, 122 p.
  30. -Koçal, A., 2004. A methodology for detection and evaluation of lineaments from satellite imagery: The Graduate School of Natural and Applied Sciences of Middle East Technical University.
  31. -Laben, C.A. and Brower, B.V., 2000. U.S. Patent No. 6,011,875. Washington, DC: U.S. Patent and Trademark Office.
  32. -Lacina, C., 1996. Interpretation structural des lineament par traitement d´image satellitaire; Cas des sous-provinces d´abitibi et dopatica (Quebec).
  33. -Lillesand, T.M. and Keifer, R.W., 1999. Remote Sensing and Image Interpretation: 4th Edition, 387 p.
  34. -Maanijou, M., Puyandeh, N., Sepahi, A. and Dadfar, S., 2015. Mapping of Hydrothermal Alteration of Dashkasan (Sari Gunay) Epithermal Gold Mine Using Aster Sensor Images and XRD Analysis: Geosciences, v. 24, p. 95-104.
  35. -Marghany, M. and Hashim, M., 2010. Lineament mapping using multispectral remote sensing satellite data: International Journal of Physical Sciences, v. 5, p. 1501-1507.
  36. -Masoud, A. and Koike, K., 2006. Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt: Journal of African Earth Sciences, v. 45, p. 467-477.
  37. -Meshkani, S.A., Mehrabi, B., Yaghubpur, A. and Sadeghi, M., 2013. Recognition of the regional lineaments of Iran: Using geospatial data and their implications for exploration of metallic ore deposits: Ore Geology Reviews, v. 55, p. 48-63.
  38. -Nama, E.E., 2004. Lineament detection on Mount Cameroon during the 1999 volcanic eruptions using Landsat ETM: International Journal of Remote Sensing, v. 25, p. 501-510.
  39. -O'leary, D.W., Friedman, J.D. and Pohn, H.A., 1976. Lineament, linear, lineation: some proposed new standards for old terms: Geological Society of America Bulletin, v. 87, p. 1463-1469.
  40. -Pour, A.B. and Hashim, M., 2014a. ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration: Springerplus, v. 3, p. 130.
  41. -Pour, A.B. and Hashim, M., 2014b. Structural geology mapping using PALSAR data in the Bau gold mining district, Sarawak, Malaysia: Advances in Space Research, v. 54, p. 644-654.
  42. -Pour, A.B. and Hashim, M., 2015. Geological structure mapping of the bentong-raub suture zone, peninsular Malaysia using palsar remote sensing data, ISPRS Annals of the Photogrammetry: Remote Sensing and Spatial Information Sciences, v. 2, p. 89-108.
  43. -Pour, A.B., Hashim, M., Makoundi, C. and Zaw, K., 2016. Structural Mapping of the Bentong‐Raub Suture Zone Using PALSAR Remote Sensing Data, Peninsular Malaysia: Implications for Sediment‐hosted/Orogenic Gold Mineral Systems Exploration: Resource Geology, v. 66, p. 368-385.
  44. -Rowan, L.C. and Lathram, E.H., 1980. Mineral exploration: Chapter, v. 17, p. 553-605.
  45. -Roy, D.P., Wulder, M.A., Loveland, T.R., Woodcock, C.E., Allen, R.G., Anderson, M.C., Helder, D., Irons, J.R., Johnson, D.M., Kennedy, R. and Scambos, T.A., 2014. Landsat-8: Science and product vision for terrestrial global change research: Remote Sensing of Environment, v. 145, p. 154-172.
  46. -Saadi, N.M., Zaher, M.A., El-Baz, F. and Watanabe, K., 2011. Integrated remote sensing data utilization for investigating structural and tectonic history of the Ghadames Basin, Libya: International Journal of Applied Earth Observation and Geoinformation, v. 13, p. 778-791.
  47. -Sabins, F.F., 1996. Remote Sensing: Principles and Interpretation, 3rd Ed: W. H. Freeman and Company, New York, 494 p.
  48. -Shrivakshan, G.T. and Chandrasekar, C., 2012. A comparison of various edge detection techniques used in image processing: International Journal of Computer Science Issues (IJCSI), v. 9, p. 269-276.
  49. -Stocklin, J., 1968. Structural history and tectonics of Iran: a review: AAPG Bulletin, v. 52, p. 1229-1258.
  50. -Wang, J. and Howarth, P.J., 1990. Use of the hough transform in automated lineament. IEEE transactions on geoscience and remote sensing, v. 28, p. 561-567.
  51. -Taghavi, A., Maanijou, M., Lentz, D. and Sepahi, A.A., 2019. Partial sub-pixel and pixel-based alteration mapping of porphyry system using ASTER data: regional case study in western Yazd, Iran: International Journal of Image and Data Fusion, p. 1-27.
  52. -Won-In, K. and Charusiri, P., 2003. Enhancement of thematic mapper satellite images for geological mapping of the Cho Dien area, Northern Vietnam: International Journal of Applied Earth Observation and Geoinformation, v. 4, p. 183-193.