ذخیره کائولن زاویه (شمال‌باختر چالدران، شمال باختر ایران): ملاحظاتی روی کانی‌شناسی و زمین‌شیمی سنگ کل

نوع مقاله : علمی -پژوهشی

نویسندگان

گروه زمین‌شناسی، دانشکده علوم، دانشگاه ارومیه، ارومیه، ایران

چکیده

ذخیره‌ی کائولن زاویه، در فاصله 20 کیلومتری شمال‌باختر شهرستان چالدران، استان آذربایجان‌غربی، شمال‌باختر ایران واقع می‌باشد. مشاهدات صحرایی و مطالعات آزمایشگاهی نشان می‌دهند که این ذخیره محصول دگرسانی سنگ‌های آذرین داسیتی پلیوسن است. کائولینیت، مونت‌موریلونیت، موسکویت- ایلیت، آلبیت، کوارتز، روتیل، هماتیت و گوتیت فازهای کانیایی در این ذخیره هستند. بررسی پارامترهای زمین‌شیمیایی نظیر مقادیر TiO2، Ba+Sr و Ce+Y+Laآشکار می‌کنند که تکوین و توسعه این ذخیره در ارتباط با عملکرد دو فرآیند درونزاد و برونزاد می‌باشد. محاسبات تغییرات جرم با فرض Ti به عنوان عنصر شاخص کم‌تحرک نشان می‌دهند که عناصری نظیر Ca،Mg ، Na،P ، Rb، Cs، Sr و Ce در طی فرآیندهای کائولینیتی شدن شسته شده و عنصر U در سیستم تثبیت ‌شده ‌است. این در حالی است که عناصری مانند Si، Al، Fe، K، Mn، Ba، Ta، Nb، Hf، Y، Zr، Ga، V، Co، Ni، Cu و کلیه REEs (به استثنای Ce) متحمل دو فرآیند شستشو و تثبیت گشته‌اند. تلفیق نتایج به دست آمده از بررسی‌های کانی‌شناسی و زمین‌شیمی تغییرات جرم حکایت از آن دارند که رفتار عناصر در طی توسعه این ذخیره توسط عواملی نظیر تغییرات در شیمی محلول‌های مسئول دگرسانی (pH و Eh)، حضور در فازهای کانیایی مقاوم، تغییر در شدت دگرسانی و نسبت سیال به سنگ، و حضور کانی‌های ثانویه که توانایی میزبانی عناصر در ساختارشان را دارند، کنترل شده است. ملاحظات زمین‌شیمیایی بیشتر آشکار می‌کنند که تمرکز لانتانیدها در این ذخیره توسط کانی‌های رسی، هماتیت، گوتیت، روتیل و فسفات‌های ثانویه صورت گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

The Zavieh kaolin deposit (northwest of Chalderan, NW Iran): Constraints on mineralogy and whole-rock geochemistry

نویسندگان [English]

  • Vahideh Alipour
  • Ali Abedini
  • Samad Alipour
Department of Geology, Faculty of Sciences, Urmia University, Urmia, Iran
چکیده [English]

IntroductionThe Zavieh kaolin deposit is located ~20 km northwest of the Chalderan city, West-Azarbaidjan Province, NW Iran. Field observations and laboratory studies indicate that this deposit is a product of alteration of dacite igneous rocks from Pliocene age. In this research, it has been attempted to provide relatively comprehensive information on the mineralogical and geochemical factors controlling the distribution and mobility of major, minor and trace elements (including rare earth elements) and the role of hypogene and/or supergene processes in the development and formation of this deposit.Materials and methods This study was performed in two field and laboratory sections. In the field, surveys have been conducted to identify different rock units. On the basis of the results of these surveys, 50 samples were collected from kaolinss and dacitic igneous rocks were collected. The laboratory stage began by preparing and studying petrography of 4 thin sections of dacitic rocks and performing XRD analysis of 8 kaolin samples at the Geological Survey of Iran and the Binaloud Company. Subsequently, for geochemical studies, 12 samples (10 kaolins and 2 dacitic igneous rocks) were analyzed with ICP-AES and ICP-MS methods, respectively. The values of major, minor, trace and rare earth elements were obtained by the ALS-Chemex Laboratory, Canada. The LOI values of the samples were determined by the company based on the weight difference of the samples before and after heating for one hour at 950 °C.Results and discussionAlteration processes on igneous rocks of Pliocene age in the Zavieh area, northwest of Chaldaran, and the formation and development of a kaolin deposit have been associated with mineralogy of kaolinite, montmorillonite, muscovite-illite albite, quartz, rutile, hematite and goethite. The geochemical parameters such as TiO2, Ba+Sr and Ce+Y+La indicate that during the development and evolution of kaolin deposit, the supergene processes overlapped the hypogene processes. Alteration of feldspar mineral and distribution of muscovite-illite and rutile minerals have played an important role in the mobility and fixation of large ion lithophile elements (LILE) in this deposit. Factors such as changes in pH of solutions responsible for kaolinization, changes in the fluid-to-rock ratio, differences in the degree of alteration, and differences in accessibility of complexing ions along with adsorption and fixation in neomorphic mineral phases were the key parameters controlling the distribution of HFS elements in the kaolin deposit. Degree of plagioclase alteration and preferential adsorption by iron oxides and hydroxides are two critical parameters controlling changes in Eu anomaly values in this deposit. Changes in values of the Ce anomaly also indicate the valuable role of hypogene solutions during the formation and evolution of this deposit.ConclusionScavenging by metal oxides and hydroxides together with pH changes are the most important factors controlling the distribution of the transition trace elements in the kaolin deposit. Changes in the chemistry of alteration solutions are the major contributing factors in the distribution of REEs in the deposit and minerals such as clays, hematite, goethite, rutile, and secondary phosphates have played valuable control role in the distribution of REEs.

کلیدواژه‌ها [English]

  • Dacite
  • Alteration
  • Zavieh
  • Kaolin
  1. -پور محسن، م.، رهگشای، م.، آزادی، ع. و شفایی مقدم، ه.، 1389. ژئوشیمی و پتروژنز سری‌های بازالتی- آندزیتی افیولیت‌های چالدران، شمال‌باختر خوی، نشریه علوم زمین، شماره 77، ص 131-136.
  2. -حاجی پور، ا.، 1394. زمین‌شیمی و کانی‌شناسی تکتوسیلیکات‌های سعدل، چالدران، استان آذربایجان‌غربی، پایان‌نامه کارشناسی‌ارشد، دانشکده علوم، دانشگاه ارومیه، 106 ص.
  3. -رهگشای، م.، آزادی، ع.، شفایی مقدم، ه. و پور محسن، م.، 1387. ژئوشیمی و پترولوژی سری‌های مافیک و اپی‌ کلاستیت‌های همراه در افیولیت‌های چالدران، جنوب ‌غرب ماکو، مجله پژوهشی علوم پایه دانشگاه اصفهان، شماره 3، ص 101-118.
  4. -عابدینی، ع.، 1395. کانی‌شناسی و زمین‌شیمی ذخیره کائولن هیزه‌جان، شمال‌باختری ورزقان، استان آذربایجان شرقی، شمال باختر ایران، مجله بلورشناسی و کانی‌شناسی ایران، شماره 4، ص 647-660.
  5. -عابدینی، ع.، 1396. کنترل کانیایی و زمین-شیمیایی بر توزیع و تحرک عناصر جزئی و خاکی نادر در طی گسترش پهنه دگرسانی آرژیلیک: بررسی موردی از شمال‌خاور خاروانا، شمال‌باختر ایران، مجله بلورشناسی و کانی‌شناسی ایران، شماره 2، ص 353-366.
  6. -معانی‌جو، م. و میرزائی، آ.، 1398. مطالعه کانسارهای فلوریت رگه‌ای باقرآباد و دره‌بادام بر پایه داده‌های عناصر خاکی کمیاب، جنوب‌شرق محلات، استان مرکزی، فصلنامه علوم زمین، شماره 111، ص 247-256.
  7. -معانی‌جو، م.، رسا، ا. و آل‌طه، ب.، 1387 الف. مطالعه کانی‌شناسی و ژئوشیمی دگرسانی گرمابی در کانسار مس چهل‌کوره، زاهدان، مجله علوم دانشگاه شهید چمران، شماره 20، ص 65-87.
  8. -معانی‌جو، م.، رسا، ا. و لنتز، د.، 1387 ب. سنگ-نگاری و دگرسانی کانسار مس چهل کوره، شمال باختر زاهدان: موازنه جرم و رفتار عناصر نادر کمیاب، فصلنامه علوم زمین، شماره 67، ص 86-101.
  9. -نبوی، م.ح.، 1355. دیباچه‌ای بر زمین‌شناسی ایران، انتشارات سازمان زمین‌شناسی ایران، 109 ص.
  10.  
  11.  
  12. -Abedini, A. and Calagari, A.A., 2015. Geochemical characteristics of the Abgharm kaolin deposit, NW Iran: Neues Jahrbuch für Mineralogie- Abhandlungen, v. 278, p. 125-139.
  13. -Abedini, A. and Calagari, A.A., 2016. Geochemical characteristics of the Arabshah kaolin deposit, Takab geothermal field, NW Iran: Arabian Journal of Geosciences, v. 9, p. 1-16.
  14. -Abedini, A., Rezaei Azizi, M. and Calagari, A.A., 2018. The lanthanide tetrad effect in argillic alteration: An example from the Jizvan district, northern Iran: Acta Geologica Sinica (English Edition), v. 92, 1468-1485.
  15. -Abedini, A. and Rezaei Azizi, M., 2019. The Hizeh-Jan Kaolin Deposit of NW Iran: the Tetrad Effect in REE Distribution Patterns: Acta Geologica Sinica (English Edition), v. 93, p. 74-87.
  16. -Abedini, A., Rezaei Azizi, M. and Dill, H.G., 2020. The tetrad effect in REE distribution patterns: A quantitative approach to genetic issues of argillic and propylitic alteration zones of epithermal Cu-Pb-Fe deposits related to andesitic magmatism (Khan Kandi District, NW Iran): Journal of Geochemical Exploration, v. 212, p. 1-16.
  17. -Aiuppa, A., Allard, P., D’Alessandro, W., Michel, A., Parello, F., Treuil, M. and Valeza, M., 2000. Mobility and fluxes of major elements, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily): Geochimica et Cosmochimica Acta, v. 64, p. 1827-1841.
  18. -Alavi, M., Bolourchi, M.H. and Navai, I., 1975. Maku 1:250,000 geological quadrangle map.
  19. -Arslan, M., Kadir, S., Abdioglu, E. and Kolayli, H., 2006. Origin and formation of kaolin minerals in saprolite of Tertiary alkaline volcanic rocks, Eastern Pontides, NE Turkey: Clay Minerals, v. 41, p. 597-617.
  20. -Christidis, G.E., 1998. Comparative study of the mobility of major and trace elements during alteration of an andesite and a rhyolite to bentonite, in the islands of Milos and Kimolos, Aegean, Greece: Clays and Clay Minerals, v. 46, p. 379-399.
  21. -Cravero, F., Dominguez, E. and Iglesias, C., 2001. Genesis and application of the Cerro Rubio Kaolin deposit, Patagonia (Argentina): Applied Clay Science, v. 18, p. 157-172.
  22. -Dill, H.G., Bosse, H.R. and Kassbohm, J., 2000. Mineralogical and chemical studies of volcanic-related argillaceous industrial minerals of the Central America Cordillera (Werstern Salvador): Economic Geology, v. 95, p. 517-538.
  23. -Fernandez-Caliani, J.C. and Cantano, M., 2010. Intensive kaolinization during a lateritic weathering event in southwest Spain: Mineralogical and geochemical inferences from a relict paleosol: Catena, v. 80, p. 23-33.
  24. -Fulignati, P., Gioncada, A. and Sbrana, A., 1999. Rare-earth element (REE) behaviour in the alteration facies of the active magmatic-hydrothermal system of Vulcano (Aeolian Islands, Italy): Journal of Volcanology and Geothermal Research, v. 88, p. 325-342.
  25. -Gouveia, M.A., Prudencio, M.I., Figueiredo, M.O., Pereira, L.C.J., Waerenbrogh, J.C., Morgado, I., Pena, T. and Lopes, A., 1993. Behaviour of REE and other trace and major elements during weathering of granitic rocks, Evora, Portugal: Chemical Geology, v. 107, p. 293-298.
  26. -Grant, J.A., 1986. The isocon diagram: A simple solution to Gresen’s equation for metasomatic alteration: Economic Geology, v. 81, p. 1976-1982.
  27. -Gresens, R.L., 1967. Composition-volume relationships of metasomatism: Chemical Geology, v. 2, p. 47-55.
  28. -Jiang, S.Y., Wang, R.C., Xu, X.S. and Zhao, K.D., 2003. Mobility of high field strength elements(HFSE) in magmatic and submarine-hydrothermal systems: Physics and Chemistry of the Earth, v. 30, p. 1020-1029.
  29. -Karakaya, N., 2009. REE and HFS element behaviour in the alteration facies of the Erenler Dagi Volcanics (Konya, Turkey) and kaolinite occurrence: Journal of Geochemical Exploration, v. 101, p. 185-208.
  30. -Koppi, A.J., Edis, R., Foeld, D.J., Geering, H.R., Klessa, D.A. and Cockayne, D.J.H., 1996. REEs trends and Ce-U-Mn associations in weathered rock from Koongarra, northern territory, Australia: Geochimica et Cosmochimica Acta, v. 60, p. 1695-1707.
  31. -Laskou, M. and Economou-Eliopoulos, M., 2007. The role of microorganisms on the mineralogical and geochemical characteristics of the Parnassos-Ghiona bauxite deposits, Greece: Journal of Geochemical Exploration, v. 93, p. 67-77.
  32. -Ma, J., Wei, G., Xu, Y., Long, W. and Sun, W., 2007. Mobilization and redistribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China: Geochimica et Cosmochimica Acta, v. 71, p. 3223-3237.
  33. -Maiza, P.J., Pieroni, D. and Marfil, S.A., 2003. Geochemistry of hydrothermal kaolins in the SE area of Los Menucos, Province of Rlo Negro, Argentina, In: Dominguez, E.A., Mas, G.R., Cravero F. (Eds.), 2003, A Clay Odyssey. Elsevier, Amsterdam, p. 123-130.
  34. -Mutakyahwa, M.K.D., Ikingura, J.R. and Mruma, A.H., 2003. Geology and geochemistry of bauxite deposits in Lushoto District, Usambara Mountains, Tanzania: Journal of African Earth Sciences, v. 36, p. 357-369.
  35. -Ndjigui, P., Bilong, P., Bitom, D. and Dia, A., 2008. Mobilization and redistribution of major and trace elements in two weathering profiles developed on serpentinites in the Lomie ultramafic complex, southeast Cameroon: Journal of African Earth Sciences, v. 50, p. 305-328.
  36. -Nesbitt, H.W. and Markovics, G., 1997. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments: Geochimica et Cosmochimica Acta, v. 61, p. 1653-1670.
  37. -Nesbitt, H.W. and Wilson, R.E., 1992. Recent chemical weathering of basalts: American Journal of Science, v. 292, p. 740-777.
  38. -Nesbitt, H.W., 1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite: Nature, v. 279, p. 206-210.
  39. -Panahi, A., Young, G.M. and Rainbird, R.H., 2000. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Quebec, Canada: Geochimica et Cosmochimica Acta, v. 64, p. 2199-2220.
  40. -Patino, L.C., Velbel, M.A., Price, J.R. and Wade, J.A., 2003.Trace element mobility during spheroidal weathering of basalts and andesites in Hawaii and Guatemala: Chemical Geology, v. 202, p. 343-364.
  41. -Plank, T. and Langmuir, C.H., 1988. The chemical composition of subducting sediment and its consequences for the crust and mantle: Chemical Geology, v. 145, p. 325-394.
  42. -Ravisankar, R., Manikandan, E., Dheenathayalu, M., Rao, B., Seshadresan, N.P. and Nair, K.G.M., 2006. Determination of rare earth elements in bench rock samples instrumental neutronactivation analysis (INAA): Nuclear Instruments and Methods in Physics Research, v. 251, p. 496-500.
  43. -Schwertmann, U. and Pfab, G., 1996. Structural V and Cr in lateritic iron oxides: Genetic implications: Geochimica et Cosmochimica Acta, v. 60, p. 4279-4283.
  44. -Sholkovitz, E., Landing, W.M. and Lewis, B.L., 1994. Ocean particle chemistry: The fractionation of the rare earth elements between suspended particles and seawater: Geochimica et Cosmochimica Acta, v. 58, p. 1567-1580.
  45. -Taylor, S.R. and McLennan, S.M., 1985. The continental crust: Its composition and evolution: Blackwell, 312 p.
  46. -Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals: American Mineralogist, v. 95, p. 185-187.