Persian References:
-Teimouri, M. and Asadi Nalivan, O., 2020. Susceptibility Zoning and Prioritization of the Factors Affecting Landslide Using MaxEnt, Geographic Information System and Remote Sensing Models (Case study: Lorestan Province). Hydrogeomorphology, v. 6(21), p. 155-179.
-Alipour, H. and Malekiyan, A., 2015. Zoning the Landslide Hazard in Jahan Watershed in the North Khorasan Province. Geography and Development, v. 13(39), p. 165-180.
-Pour Moghadam, A., 2014. Landslide risk zoning using Bayesian and Dempster-Schiffer theory (case study: a part of Babelrud watershed). Master's thesis. Faculty of Agricultural Sciences and Natural Resources. University of Sari.
-Babolimoakher, H., Taghian, A. and Shirani, K., 2019. Assessment of Landslide Susceptibility Zoning Map Using Confidence Factor-Logistic Regression Hybrid Method by Means of Geomorphometric Indices. Quantitative Geomorphological Research, v. 7(3), p. 91-116.
-Ghasemian, B., Abedini, M., Village, Sh. and Shirzadi, A., 2016. Landslide susceptibility assessment using support vector machine algorithm (case study: Kamiyaran city, Kurdistan province), Quantitative Geomorphology Research Quarterly, v. 6(3), p. 15-36.
-Heydari, N., Habibnejad, M., Kavian, A. and Pourghasemi, H.R., 2020. Landslide susceptibility modelling using the random forest machine learning algorithm in the Watershed of Rais-Ali Delvari Reservoir. Watershed Management Research Journal, v. 33(1), p. 2-13.
-Koh Pima, A., 2016. Susceptibility Zoning, Landslide Risk Assessment and Management (Case Study: Lethyan Watershed). Ph.D. Thesis. Tehran University, Agriculture and Natural Resources Campus, Faculty of Natural Resources. Tehran Iran.
-Kornejady, A. and Pourghasemi, H.R., 2019. Landslide susceptibility assessment using data mining models, a case study: Chehel-Chai Basin. Watershed Engineering and Management, v. 11(1), p. 28-42.
-Kornejady, A., Ownegh, M., Pourghasemi, H.R., Bahremand, A. and Motamedi, M., 2020. (Landslide susceptibility prediction using the coupled Mahalanobis distance and machine learning models (case study: Owghan watershed, Golestan province. Researches in Earth Sciences, v. 11(2), p. 1-18.
-Maleki, A., Marabi, H. and Hamid R., 2015. Evaluation of Topographic Position Index (TPI) in Sanandaj-Sirjan and Broken Zagros Zone, Quantitative Geomorphology Research Quarterly, v. 5(1), p. 141-129.
-Mohammadnia, M. and Fallah, G., 2018. Landslides susceptibility mapping using fuzzy logic and AHP. Journal of Applied researches in Geographical Sciences, v. 18(48), p. 115-130.
-Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H. and Feizizadeh, B., 2018. Assessing the effectiveness of the maximum entropy model to gully erosion susceptibility prediction in the Kashkan-Poldokhtar Watershed. Watershed Engineering and Management, v. 10(4), p. 727-738.
-Rajabzadeh, F., Ghiasi, S. and Rahmati, O., 2018. The performance of the maximum entropy algorithm and geographic information system in shallow landslide susceptibility assessment. Journal of Water and Soil Resources Conservation, v. 8(2), p. 57-74.
-Roustaie, S., Mokhtari, D. and Ashrafi Fini, Z., 2020. Landslide hazard zonation in Taleghan watershed using Shannon entropy index. Geography and Planning, v. 24(71), p. 125-150.
-Tablebi, A., Nafarzadegan, A.R. and Malekinezbad, H., 2010. A review on empirical and physically based modelling of rainfall triggered landslides.
English References:
-Chen, W., Zhang, S., Li, R. and Shahabi, H., 2018. Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling, Science of the total environment, v. 644, p. 1006-1018.
-Dahal, R.K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S. and Paudyal, P., 2008. Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology, v. 102(3-4), p. 496-510.
-Ercanoglu, M. and Gokceoglu, C., 2002. Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environmental geology, v. 41(6), p. 720-730.
-Fathi, M.H., Khohdel, K., Shoreh Kandi, A., Ashrafifeini, Z. and Khaliji, M.A., 2015. The combination of spectral and spatial data in zoning oflandslide susceptibility (Case study: Sangorchay reservoir) Journal of Biodiversity and Environmental Sciences (JBES), p. 515-527.
-Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E. and Savage, W.Z., 2008. Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Engineering geology, v. 102(3-4), p. 99-111.
-Kerekes, A.H., Poszet, S.L. and Andrea, G.Á.L., 2018. Landslide susceptibility assessment using the maximum entropy model in a sector of the Cluj–Napoca Municipality, Romania. Revista de Geomorfologie, v. 20(1), p. 130-146.
-Kornejady, A., Ownegh, M. and Bahremand, A., 2017. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. Catena, v. 152, p. 144-162.
-Kornejady, A., Pourghasemi, H.R. and Afzali, S.F., 2019. Presentation of RFFR new ensemble model for landslide susceptibility assessment in Iran. In Landslides: theory, practice and modelling, Springer, Cham., p. 123-143.
-Lee, S., Hwang, J. and Park, I., 2013. Application of data-driven evidential belief functions to landslide susceptibility mapping in Jinbu, Korea. Catena, v. 100, p. 15-30.
-Liu, J. and Duan, Z., 2018. Quantitative assessment of landslide susceptibility comparing statistical index, index of entropy, and weights of evidence in the Shangnan area, China. Entropy, v. 20(11), p. 868-884.
-Meten, M., PrakashBhandary, N. and Yatabe, R., 2015. Effect of landslide factor combinations on the prediction accuracy of landslide susceptibility maps in the Blue Nile Gorge of Central Ethiopia. Geoenvironmental Disasters, v. 2(1), p. 1-17.
-Mirzaei, G., Soltani, A., Soltani, M. and Darabi, M., 2018. An integrated data-mining and multi-criteria decision-making approach for hazard-based object ranking with a focus on landslides and floods. Environmental Earth Sciences, v. 77(16), p. 1-23.
-Pandey, V.K., Pourghasemi, H.R. and Sharma, M.C., 2020. Landslide susceptibility mapping using maximum entropy and support vector machine models along the Highway Corridor, Garhwal Himalaya. Geocarto International, v. 35(2), p. 168-187.
-Park, N.W., 2015. Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets. Environmental Earth Sciences, v. 73(3), p. 937-949.
-Pradhan, B., 2011. Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in Malaysia, Environmental Earth Sciences, v. 63, p. 329-349.
-Phillips, S.J., Anderson, R.P. and Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling, v. 190(3), p. 231-259.
-Tien Bui, D., Shahabi, H., Shirzadi, A., Chapi, K., Alizadeh, M., Chen, W. and Tian, Y., 2018. Landslide detection and susceptibility mapping by airsar data using support vector machine and index of entropy models in cameron highlands, Malaysia, Remote Sensing, v. 10(10), p. 15-27.
-Wang, P., Bai, X., Wu, X., Yu, H., Hao, Y. and Hu, B.X., 2018. GIS-based random forest weight for rainfall-induced landslide susceptibility assessment at a humid region in Southern China. Water, v. 10(8), p. 1019-1034.
-Zare, M., Pourghasemi, H.R., Vafakhah, M. and Pradhan, B., 2013. Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms, Arabian Journal of Geosciences, v. 6(8), p. 2873-2888.