نوع مقاله : علمی -پژوهشی
نویسنده
استادیار، پژوهشکده هواشناسی
چکیده
در این پژوهش تغییرات ارتفاع تراز ناواگرا در ماههای ژانویه و ژولای در دوره آماری 2015-1976 در ایران بررسی شد. تراز ناواگرا، پایینترین تراز فشاری است که در آن واگرائی افقی صفر میباشد. در ایران نه نقطه انتخاب و نیمرخ قائم میدان واگرائی افقی و امگا در این نقاط تحلیل شد. بررسی روزانه نیمرخ قائم واگرائی در حالتهای موردی نشان داد که چون کمفشارها (پرفشارها) با همگرائی (واگرائی) در ترازهای زیرین و واگرائی (همگرائی) در ترازهای بالا همراه است، پس حداقل یک تراز ناواگرا در مناطقی که تحتتاثیر این سامانهها قرار میگیرند، وجود دارد و ارتفاع تراز ناواگرا به ژرفای همگرائی (واگرائی) زیرین بستگی دارد. هر چه ژرفای همگرائی (واگرائی) زیرین بیشتر باشد، تراز ناواگرا در سطح فشاری بالاتری قرار میگیرد. بنابراین تراز ناواگرا در کمفشارهای گرمائی، در تراز فشاری پایینتری هستند. بررسی میانگین ماهانه نیمرخ قائم واگرائی نشان داد که در شمالغرب، غرب، جنوبغرب، مرکز، جنوب، شرق و جنوبشرق ایران، تراز ناواگرا در ژولای پایینتر از ژانویه است. این تفاوت به دلیل وجود کمفشارگرمائی در این ماه و ایجاد حرکت صعودی و همگرائی کمعمق میباشد. در شمال و شمالشرق ایران تراز ناواگرا در ژانویه پایینتر از ژولای است. این مناطق در ماه ژولای کمتر تحتتاثیر کمفشارگرمائی قرار دارند. بررسی نتایج روند نشان داد که تغییرات میانگین ماهانه تراز ناواگرا در ژولای در غرب و شمالشرق ایران روند صعودی دارد که معرف کاهش ژرفای همگرائی زیرین ناشی از کمفشارهای عبوری است. در مرکز و جنوب ایران این کمیت دارای روند نزولی است که بیانگر افزایش ژرفای همگرائی زیرین ناشی از کمفشارگرمائی در این منطقه است.
کلیدواژهها
عنوان مقاله [English]
Evaluation of the Non-divergence level height over Iran
نویسنده [English]
- Mohammad Moradi
Assistant Professor, Atmospheric Science and Meteorological Research (ASMERC), Tehran
چکیده [English]
In this study, the variation of daily and monthly non-divergent level in January and July in 1976-2015 long-term periods is investigated in Iran. The non-divergent level is assumed to be the lowest level between 700 and 300 hPa, in which the horizontal divergence is zero. To calculate the horizontal divergence at the standard pressure levels, the zonal and meridional wind components are extracted from the NCEP / NCAR archive. In Iran, nine points were selected in different regions, and the vertical profiles of divergence and Omega are analyzed. The daily survey of vertical profile of divergent in case study shows that, because low pressure (highs) is accompanied with convergence (divergence) in the lower levels and divergence (convergence) at high levels, at least one non-divergent level exists in the areas affected by these systems. The height of non-divergent level depends on the depth of the underlying convergence, so the deeper the underlying convergence or divergence, the height of the non-divergence level will be more elevated. Actually the non-divergent level of the heat lows )highs(are seen in lower levels. The mean monthly height of non-divergent level in the statistical period indicate that it is lower in July in the northwest, west, southwest, center, south, east and south east of Iran. This condition is created by the dominance of the heat low and its shallow convergence in July. In the north and northeastern of Iran, the non-divergent level is lower in January than in July. These areas are less affected by heat lows in July. The study of the trend of changes in the mean monthly height of non-divergent level in the long-term period showed that there is an upward trend in western and north-eastern of Iran and downward trend in southern and central of Iran in July. This condition is indicating an increase convergence depth of the heat low-pressure in southern and central (western and north-eastern) of Iran.
کلیدواژهها [English]
- Non-divergent level
- Vertical profile of divergence
- Horizontal convergence
-احمدی گیوی، ف. و قائمی، ه.، 1372. محاسبه سرعت قائم با استفاده از روش جنبش شناختی، نشریه فیزیک زمین و فضا، شماره 20 (45)، ص1-64.
-اردکانی، ح.، مرادی، م. و قائمی، ه.، 1384. تخمین بارش به وسیله سرعت قائم و آب بارش شو، فصلنامه تحقیقات جغرافیائی، شماره 78، ص 50-65.
-مرادی، م.، سلیقه زاده، م. و ارکیان، ف.، 1396. بررسی چینش قائم باد سطوح بالا، پژوهشهای اقلیم شناسی، شمارههای 31 و 32، ص 53-37.
-Carlson, T.N., 1998. Mid-Latitude Weather Systems, American Meteor Society, 507 p.
-Coiffier, J., 2011. Fundamentals of numerical weather prediction, Combridge: university press Inc, 340 p.
-Hoskins, B.J., Draghici, I. and Davis, H.C., 1978. A new look at the ω–equation: Quarterly Journal of the Royal Meteorological Society, v. 104, p. 31-38.
-Hoskins, B.J. and Pedder, M.A., 1980. The diagnosis of middle latitude synoptic development: Quarterly Journal of the Royal Meteorological Society, v. 104, p. 31-38.
-Holton, J.R., 2012. An Introduction to Dynamic Meteorology: Elsevier, Academic Press Inc., 553 p.
-Lackmann, G.M., 2011. Midlatitude Synoptic Meteorology: Dynamics, Analysis and Forecasting, American Meteorological Society, 345 p.
-Martin, J.E., 2006. Mid--Latitude Atmospheric Dynamics: John Wiley & Sons, Ltd, 324 p.
-Martin, J.E., 2014. Quasi-geostrophic diagnosis of the influence of vorticity advection on the development of upper level jet-front systems, Quarterly Journal of the Royal Meteorological Society, v. 104, p. 2658-2671.
-Petterssen, S., 1956. Motion and Motion Systems, Vol. I. Weather Analysis and Forecasting: McGraw-Hill, 428 p.
-Riemer, M., Baumagart, M. and Eiermann, S., 2014. Cyclogenesis Downstream of Extratropical Transition Analyzed by Q-Vector Partitioning Based on Flow Geometry: Journal of the atmospheric sciences, v. 71, p. 4204-4220.
-Sutcliffe, R.C., 1947. A contribution to the problem of development: Quarterly Journal of the Royal Meteorological Society, v. 73, p. 370-383.
-Sutcliffe, R.C. and Forsdyke, A.G., 1950. The theory and use of upper – air thickness patterns in forecasting: Quarterly Journal of the Royal Meteorological Society, v. 76, p. 1890-217.
-Trenberth, K.E., 1978. On the interpretation of the diagnostic quasi-geostrophic omega equation: Monthly Weather Review, v. 106, p. 131-137.
-Wallace, J.M. and Hobbs, P.V., 2006. Atmospheric science, An introductory survey, 487 p.