Stability analysis of bed sediments by using critical bed shear stress& critical unit discharge methods (case study: lavij river)

Document Type : علمی -پژوهشی

Abstract

One of the key issues of erosion and stability of the river is the beginning the movement of sediment particles. River sediment yield caused water turbidity, nutrients and pollution problems of water, buried in the water diversion facilities as well as filling the water storage lakes. Flow that will start moving particle, called the critical flow. The initial move threshold sediment particles has been investigated in several different methods, most important of which are the average critical velocity, critical shear stress and critical unit discharge. To investigate the stability of the Lavij river bed sediments in the city of Noor, according to river conditions used the critical shear stress and critical unit discharge methods. To determine initial move threshold sediment particles in the bed of the river were two cross-section of the river, two cross-section conditions were assessed. After that, the critical shear stress and critical unit discharge for four particle size D16, D50, D84 and D95 in each cross-section was calculated, and showed that in cross-section (1) in the bankfull discharge conditions all particles with sizes D16, D50, D84 and D95 begin to moving, and so in the bankfull discharge, sediment conditions will generally change. In cross-section (2) particles with a diameter D95 and the more it will be remain stable in the river bed, and other smaller particles of this size are starting to move. Due to further slope of the bed and width less active channel in the cross-section (1) has caused that all particles are unstable. Finally, the results from both methods were highly concordant, and this confirms that the use of these methods for stabilizes studies and sediment yield of river are appropriate.

Keywords


  1. منابع
  2. -استادی، ف.، مجد زاده طباطبایی، م. و علی محمدی، ع.، 1393. مدل بهینه‌سازی آب‌شکن‌های رودخانه‌ای و نقش آن در پایدارسازی مورفولوژیکی رودخانه، نشریه هیدرولیک، دوره 4، شماره 9، ص 55-72.
  3. -جهانشاهی، م.، ثابتی، ا. و قمشی، م.، 1389. بررسی آستانه حرکت ذرات رسوب بر اساس سرعت سقوط ذرات، دومین کنفرانس سراسری مدیریت جامع منابع آب، دانشگاه شهید باهنر، کرمان.
  4. -حسین‌زاده، م.م. و اسماعیلی، ر.، 1394. ژئومورفولوژی رودخانه‌ای، مفاهیم، اشکال و فرآیندها، انتشارات دانشگاه شهید بهشتی، تهران، 338 ص.
  5. -خالقی، س. و ملکانی، ل.، 1394. برآورد فرسایش کرانه رودخانه لیقوان‌چای با استفاده از شاخص تنش برشی نزدیک کرانه راسگن، کنگره بین‌المللی جغرافیا و توسعه پایدار، تهران.
  6. -رسولیان‌فر، پ. و افضلی‌مهر، ح.، 1385. اثر مؤلفه‌های آشفتگی جریان در شروع حرکت ذرات رسوب، هفتمین سمینار بین‌المللی مهندسی رودخانه، دانشگاه شهید چمران، اهواز.
  7. -ژولین، پ.، 1388. مکانیک رودخانه، ترجمه محمدرضا جعفرزاده، انتشارات دانشگاه فردوسی مشهد، 539 ص.
  8. -کریمی پاشاکی، م.، اطمینان، ح. و صارمی، ع.، 1391. طراحی پوشش ریپ‌رپ رودخانه با توجه به شاخص فرسایش کناری راسگن مطالعه موردی رودخانه خرسان، نهمین سمینار بین‌المللی مهندسی رودخانه، دانشگاه شهید چمران اهواز، اهواز.
  9. -منصوری هفشجانی، م. و شفاعی بجستان، م.،1390. طراحی قطر سنگ‌چین در اطراف تکیه‌گاه پل واقع در قوس رودخانه، مجله پژوهش آب ایران، شماره 9، ص73-82.
  10. -نظری، ا. و حیدری، م.، 1388. آستانه حرکت رسوبات یکنواخت، هشتمین کنفرانس هیدرولیک ایران، تهران، دانشکده فنی دانشگاه تهران.
  11. - Bagnold, RA., 1973. The nature of saltation and “bed load” transport in water, Proceedings of the Royal Society London, England, series A 332, p. 473-504.
  12. -Bathurst, J. C., 1987. Measuring and modelling bedload transport in channels with coarse bed materials, in River Channels: Environment and Process, edited by K. Richards, Blackwell, Malden, Mass, p. 272-294.
  13. -Bathurst, J. C., Graf, W. H. and Cao, H. H., 1987. Bed load discharge equations for steep mountain rivers, in Sediment Transport in Gravel- Bed Rivers, edited by C. R. Thorne, J. C. Bathurst, and R. D. Hey, John Wiley, New York, p. 453-477.
  14. - Knighton, D., 1998. Fluvial Forms and Processes A New Perspective, Oxford University Press Inc, New York, 383 p.
  15. -Minghui, Y.U., Hongyan, W., Yanjie, L. and Chunyan, H.U., 2010. Study on the stability of non-cohesive river bank, International Journal of Sediment Research, v. 25(4), p. 391-398.
  16. -Palmer, M., Menninger, H. L. and Bernhardt, E., 2010. River restoration habitat heterogeneity and biodiversity: a failure of teory or practice? Freshwater biology55, p. 205-222.
  17. -Rinaldi, M., Simoncini, C. and Piegay, H., 2009. Scientific design strategy for promoting sustainable sediment management: the case of the magra river (central northern Italy) river research and application, v. 25, p. 607-625
  18. -U.S. Department of Agriculture, USA., 2008. Stream Simulation: An Ecological Approach to Providing Passage for Aquatic Organisms at Road-Stream Crossings.
  19. - Yang, CT., 1996. Sediment Transport: Theory and Practice, McGraw-Hill, New York, NY, 396 p.
  20. -Wallerstein, N.P., Soar, P.J. and Thorne, C.R., 2006. River energy auditing scheme (REAS) for catchment flood management planning, International conference on fluvial hydraulics, Lisbon Portugal, p. 1923-1932,
  21. -Wohl, E., 2000. Mountain Rivers, American Geophysical Union, Washington, D.C, 320 p.