Introduction Urban heat islands (UHIs) are a global issue and threaten the performance of cities and urban environments. In recent years, due to the greater concentration of urbanization on one hand and global warming on the other hand, we have witnessed widespread changes in the urban environment. In other words, urban biodiversity in metropolitan areas has been threatened by surface urban heat islands. (SUHI) is one of the major topics in urban climate studies; the surface has a complex structure that can be a combination of vegetation, water and impermeable surfaces and soil. As a result, the land surface temperature (LST) has a great deal of time-space variation. This study investigates the biodiversity approach of urban heat islands in Tabriz. Materials and Methods The processes used to calculate LST in this study are as follows 1) Convert digital image values to spectral radians 2) Conversion of spectral radiance to brightness temperature. 3) Convert brightness temperature to kinetic temperature. After calculating the LST from the Landsat 7 satellite ETM + band, the Fractal Net Evolution Approach (FNEA) is used for LST segmentation. Finally, the Environmental Criticality Index (ECI) was used to study urban viability.
Results and Discussion It provides statistical characteristics for the 15 year period of Landsat 7 ETM + satellite images for Tabriz. As shown in the table, the average land surface temperature for the city of Tabriz during the period from 1999 to 2013 is between 30 and 43 degrees Celsius. The lowest LST recorded in Tabriz was 13.40 degrees Celsius on 7.20.2002 and the highest land surface temperature was calculated with 43.94 degrees Celsius on 7.7.2010. The average land surface temperature in most selected images is between 34 and 37 degrees Celsius, and the mean deviation for LST in this metropolis is about 3 degrees Celsius, which plays an important role in the temperature distribution of Tabriz. Conclusion The results showed signs of intensifying effects of SUHI, especially in the period 2013–2010, when urbanization was higher. The maximum deviation from the standard was observed during the study period from 2010 to 2013, with a standard deviation of 4.1 in 2010 and a sensitivity of 4.50 degrees Celsius in 2013, the final year of the survey. The minimum LST was calculated to be 13.40 degrees Celsius in 2002 and its maximum with 43.94 degrees Celsius in 2010. Significant positive correlation was observed between LST and urban areas, confirming the strong influence of urbanization on SUHI formation in Tabriz. Vegetation and its continuous improvement help reduce the effects of SUHI warming. Important thermal islands of Tabriz were identified using Landsat 7 ETM + sensor data including: Tabriz Airport (the largest thermal island in the city); Southwest Industrial Areas; Railway Station, Tabriz Market, High Residential Areas Such as MOLAZINAL and Tabriz metropolitan areas. The ECI map produced in this study also shows the close relationship between LST and NDVI. Therefore, urban green spaces are important components in the concept of urban sustainability development.
-احمدی، م. و داداشی رودباری، ع.، 1396. شناسایی جزایر حرارتی شهری مبتنی بر رویکرد زیست محیطی، مطالعه موردی(کلان شهر اصفهان)، جغرافیا و برنامهریزی محیطی، شماره 3، ص 1-20.
-احمدی، م.، داداشی رودباری، ع. و اسفندیاری، م.، 1398. پایش جزایر حرارتی شهری با رویکرد تکاملی فرکتال ویژه (FNEA) (مطالعه موردی: کلانشهر تهران)، سنجش از دور و GIS ایران، شماره 1، ص 95-114.
-رنجبر سعادت آبادی، ع.، علی اکبری بیدختی، ع. و صادقی حسینی، ع.، 1384. آثار جزیره گرمایی و شهرنشینی روی وضع هوا و اقلیم محلی در کلان شهر تهران براساس دادههای مهرآباد و ورامین، مجله محیط شناسی، شماره 39، ص 59-68.
-شکیبا، ع.، ضیائیان فیروز آبادی، پ.، عاشورلو، د. و نامداری، س.، 1388. تحلیل رابطه کاربری و پوشش اراضی و جزیره حرارتی شهر تهران با استفاده از دادههای +ETM، سنجش از دور GIS ایران، شماره 1، ص 39-56.
-صادقی نیا، ع.، 1391. تحلیل فضایی-زمانی ساختار جزیره حرارتی تهران با استفاده از سنجش از دور و سیستم اطالعات جغرافیایی، پایاننامه کارشناسیارشد، دانشکده علوم جغرافیایی، دانشگاه خوارزمی تهران.
-Amiri, R., Weng, Q., Alimohammadi, A. and Alavipanah, S.K., 2009. Spatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote sensing of environment, v. 113, p. 2606-2617.
-Chander, G. and Groeneveld, D.P., 2009. Intra-annual NDVI validation of the Landsat 5 TM radiometric calibration, International Journal of Remote Sensing, v. 30, p. 1621-1628.
-Chander, G. and Markham, B., 2003. Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges, IEEE Transactions on Geoscience and Remote Sensing, v. 41, p. 2674-2677.
-Coseo, P. and Larsen, L., 2014. How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban Heat Islands in Chicago, Landscape and Urban Planning, v. 125, p. 117-129.
-Debbage, N. and Shepherd, J.M., 2015. The urban heat island effect and city contiguity, Computers, Environment and Urban Systems, v. 54, p. 181-194.
-Farina, A., 2012. Exploring the relationship between land surface temperature and vegetation abundance for urban heat island mitigation in Seville, Spain. LUMA-GIS Thesis.
-Kikon, N., Singh, P., Singh, S.K. and Vyas, A., 2016. Assessment of urban heat islands (UHI) of Noida City, India using multi-temporal satellite data, Sustainable Cities and Society, v. 22, p. 19-28.
-Lo, C.P., Quattrochi, D.A. and Luvall, J.C., 1997. Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect, International journal of remote sensing, v. 18, p. 287-304.
-Mohajerani, A., Bakaric, J. and Jeffrey-Bailey, T., 2017. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete, Journal of environmental management, v. 197, p. 522-538.
-Molnar, G., 2016. Analysis of land surface temperature and NDVI distribution for Budapest using Landsat 7 ETM+ data, Acta climatologica et chorologica, v. 49, p. 49-61.
-Oke, T.R., 1982. The energetic basis of the urban heat island, Quarterly Journal of the Royal Meteorological Society, v. 108, p. 1-24.
-Pan, J., 2016. Area delineation and spatial-temporal dynamics of urban heat island in Lanzhou City, China using remote sensing imagery, Journal of the Indian Society of Remote Sensing, v. 44, p. 111-127.
-Rasul, A., Balzter, H., Smith, C., Remedios, J., Adamu, B., Sobrino, J. and Weng, Q., 2017. A review on remote sensing of urban heat and cool islands, Land, v. 6, p. 38-54.
-Santamouris, M., 2013. Energy and climate in the urban built environment, Routledge.
-Senanayake, I.P., Welivitiya, W.D.D.P. and Nadeeka, P.M., 2013. Remote sensing based analysis of urban heat islands with vegetation cover in Colombo city, Sri Lanka using Landsat-7 ETM+ data, Urban Climate, v. 5, p. 19-35.
-Singh, R.B. and Grover, A., 2015. Spatial correlations of changing land use, surface temperature (UHI) and NDVI in Delhi using Landsat satellite images, In Urban Development Challenges, Risks and Resilience in Asian Mega Cities, Springer, Tokyo, p. 83-97.
-Son, N.T., Chen, C.F., Chen, C.R., Thanh, B.X. and Vuong, T.H., 2017. Assessment of urbanization and urban heat islands in Ho Chi Minh City, Vietnam using Landsat data, Sustainable cities and society, v. 30, p. 150-161.
-Srivanit, M. and Hokao, K., 2012. Thermal infrared remote sensing for urban climate and environmental studies: An application for the city of Bangkok, Thailand, Journal of Architectural/Planning Research and Studies, v. 9, p. 83-100.
-Wark, D.Q., Yamamoto, G. and Lienesch, J.H., 1962. Methods of estimating infrared flux and surface temperature from meteorological satellites, Journal of the Atmospheric Sciences, v. 19, p. 369-384.
-Yang, J., Wang, Z.H. and Kaloush, K.E., 2015. Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’for mitigating urban heat island, Renewable and Sustainable Energy Reviews, v. 47, p. 830-843.
-Zhang, H., Qi, Z.F., Ye, X.Y., Cai, Y.B., Ma, W.C. and Chen, M.N., 2013. Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China, Applied Geography, v. 44, p. 121-133.
Ahmadi, M. and آزادی مبارکی, م. (2020). Investigation of Tabriz urban heat islands with urban livability approach. Researches in Earth Sciences, 11(3), 245-262. doi: 10.52547/esrj.11.3.245
MLA
Ahmadi, M. , and آزادی مبارکی, م. . "Investigation of Tabriz urban heat islands with urban livability approach", Researches in Earth Sciences, 11, 3, 2020, 245-262. doi: 10.52547/esrj.11.3.245
HARVARD
Ahmadi, M., آزادی مبارکی, م. (2020). 'Investigation of Tabriz urban heat islands with urban livability approach', Researches in Earth Sciences, 11(3), pp. 245-262. doi: 10.52547/esrj.11.3.245
CHICAGO
M. Ahmadi and م. آزادی مبارکی, "Investigation of Tabriz urban heat islands with urban livability approach," Researches in Earth Sciences, 11 3 (2020): 245-262, doi: 10.52547/esrj.11.3.245
VANCOUVER
Ahmadi, M., آزادی مبارکی, م. Investigation of Tabriz urban heat islands with urban livability approach. Researches in Earth Sciences, 2020; 11(3): 245-262. doi: 10.52547/esrj.11.3.245