Economic geology and mineralogy studies of Chah Gabri copper deposit, south of Damghan

Document Type : علمی -پژوهشی

Authors

Department of Economic Geology, Faculty of Earth Sciences, Shahroud University of Technology, Shahroud, Iran

Abstract

IntroductionChah-gabri copper deposit is located 90km south of Damghan at Semnan province, in the northeast part of Central Iran at a structural zone bottom of the Turud_Chah Shirin volcanic-sedimentary strip. This strip is eastern-western, in the form of a cross between two faults of Trood in the south and Anjilu in the north. Trend of all units are northwest – southeast) N65̊w (parallel to the zone. Copper mineralization in this area is vein-veinlets and open space fillings along the fracture and faults are composed of lava and tuff units. Minerals host rocks are mainly volcanic lava containers such as basalt andesite, andesite, trachy andesite and less sedimentary pyroclastic. The main minerals forming the deposit include sulfides (Chalcopyrite, pyrite, chalcocite and coveline), carbonate (malachite), iron oxides (hematite, goethite and limonite), and gangue minerals (Calcite, Quartz). Ore mineral textures include: vein-veinlets, open space filling, replacement and disseminated textures.Materials and MethodsStudy area is located in Semnan province, 90 km south of Damghan city, in geographical coordinates 54° 20´ to 54° 26´ northeast longitude and 35°17´ to 35 ° 23´ north latitude.During several stages of field visit, based on lithology and mineralogical diversity, 58 samples of rock and ore were taken with their geographical coordinates. Of these, 22 are thin sections, 14 are polished sections and 8 are thin - polished sections. Eventually they were prepared and studied. Overall, they were analyzed in the laboratories of Iran Minerals Research and Processing Center (IMIDRO) in which, 4 samples were studied by X-ray diffraction method (XRD), 7 by x-ray fluorescence (XRF) and 8 by ICP- MS method.Results and Discussion The results of geological, mineralogical, structural and textural studies of minerals show that much of the Copper mineralization is in the form of open space filling. Among the host rock components, units with a combination of andesite, basalt andesite and trachy andesite have been observed. Copper mineralization in this area is in the form of chalcopyrite, chalcocite, covolite and natural copper. It also occurs in the form of malachite on surface outcrops. In the study of fluid inclusion, temperature was175 to 200 degrees Celsius, salinity was 4 to 10.5 wt.% equivalent to NaCl and density was 0.9 to 1 g / cm3, which were determined to indicate the epithermal range.ConclusionConsidering all field and laboratory evidence including host rock composition, texture and mineralization, zones alterations, major and associated metal elements, paragenetic sequence, the geochemistry and thermometry of fluid interconnects. Chahgabri copper deposit is in good compatibility with Manto type deposits, but due to vein ore mineralization, it can be classified as low sulfide vein epithermal hydrothermal deposits.

Keywords


  1. -آقانباتی، س.ع.، 1383. زمین‌شناسی ایران، چاپ اول، انتشارات سازمان زمین‌شناسی، تهران، 640 ص.
  2. -جعفریان، م.، 1380. نقشه زمین‌شناسی چهارگوش کلاته رشم با مقیاس 100000/1، سازمان زمین‌شناسی و اکتشافات معدنی کشور، تهران، شماره 6860.
  3. -خاکزاد، ا. و شعبان نژاد، ش.، 1384. بررسی کانی‌شناسی، سنگ‌شناسی، دگرسانی و سنگ ژئوشیمی کانسار مس باغ خشک (شمال خاور سیرجان)، فصلنامه علوم زمین، دوره 15، شماره 58، ص 68 تا 85.
  4. -علی‌زاده، و.، مؤمن‌زاده، م. و امامی، م.ه.، 1391. سنگ‌نگاری، ژئوشیمی، مطالعه میانبارهای سیال و تعیین نوع کانه‌زایی کانسار مس ورزگ- قائن، فصلنامه علوم زمین، سال 21، شماره 84، ص 47 تا 58.
  5. -فردوست، ف. و عبدالهی حیدر‌باغی، ا.، 1395. زمین‌شناسی، کانی‌شناسی، الگوی تشکیل کانسار مس و آهن رباعی، جنوب دامغان، پایان‌نامه کارشناسی‌ارشد، دانشکده علوم زمین، دانشگاه صنعتی شاهرود، سمنان، 468 ص.
  6. -فردوست، ف. و ناهیدی‌فر، ل.، 1393. پایان‌نامه کارشناسی‌ارشد زمین‌شناسی اقتصادی کانی‌شناسی، ژئوشیمی و ژنز کانسار مس دیان(جنوب دامغان)، دانشکده علوم زمین، دانشگاه صنعتی شاهرود، 358 ص.
  7. -معین وزیری، ح. و احمدی، ع.، 1389. پتروگرافی و پترولوژی سنگ‌های آذرین، چاپ دوم، دانشگاه تربیت معلم، تهران، 547 ص.
  8. -هوشمندزاده، ع.، علوی نایینی، م. و حقی‌پور، ع.، 1357. تحول پدیده‌های زمین‌شناسی ناحیه ترود از پرکامبرین تا عهدحاضر، سازمان زمین‌شناسی کشور، تهران، 138 ص.
  9.  
  10.  
  11. -Chen, Y. and Zhang, Y., 2008. “Olivine dissolution in basaltic melt”, Journal of Geochimicall et Cosmochimica Acta, v. 72(19), p. 4756-4777.
  12. -Fisher, R.V., 1966. Rocks composed of volcanic fragments and their classification: Journal of Earth-Science Reviews, v. 1(4), p. 287-298.
  13. -Galley, A.G., Hannington, M.D. and Jonasson, I., 2007. Volcanogenic massive sulphide deposits: Journal of Mineral Deposits of Canada, v. 85, p. 161-5141.
  14. -Haas, J.L., 1971. The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure: Journal of Economic Geology, v. 66(6), p. 940-946.
  15. -Hassanzadeh, J., Ghazi, A.V., Axen, J. and Guest, B., 2002. Oligomiocene mafic-alkaline magmatiam in North and northwest of Iran Evidence for the separation of the alborz form the Urumieh-Dokhtar magmatic arc: Geological Society of America Absteracts whith Program, 331 p.
  16. -Kawabata, H. and Shuto, K., 2005. Magma mixing recorded in intermediate rocks associated with high-Mg andesites from the Setouchi volcanic belt, Japan: implications for Archean TTG formation: Journal of Volcanology and Geothermal Research, v. 140(4), p. 241-271.
  17. -Middlemost, E.A.K., 1994. Naming materials in the magma / igneous rock system, Longman Groun u. k, p. 73-86.
  18. -Mohafez, S.A. and eyer, D., 1972. First Contribution of the NIOC-ERAP Agreements to the Knowledge of Iranian Geology, Edition Techniqs, Paris, 58 p.
  19. -Nogel Sadat, M.Sc. A. A., 1993. Iran Seismotectonic Map 1/1000000, Experimental Chart, Book Editing Project, Geological Survey of Iran, Tehran.
  20. -Pettijohn, F.J., Potter, P.E. and Siever, R.S., 1987. Sand and Sandstone, Springer- Verlag, New York, 553 p.
  21. -Piercey, S.J., 2011. The setting, style, and role of magmatism in the formation of Volcanogenic massive sulfide deposits”, Journal of Mineralium Deposita, v. 46(5-6), p. 449-471.
  22. -Pirajno, F., 2009.Geological Survey of Western Australia. Springer Science, 100 Plain Street Mine ral House East Perth WA 6004 Australia, 132 p.
  23. -Rollinson, H.R., 2014. Using Geochemical Data: Evaluation, Presentation, Interpretation, Routledge, 73 p.
  24. -Shamanian, G.H., Hedenquist, J.W., Hattori, K.H. and Hassanzadeh, J., 2004. "The Gandy and Abolhassani epithermal prospects in the Alborz magmatic arc, Semnan province, Northern Iran: Journal of Economic Geology, v. 99(4), p. 691-712.
  25. -Tucker, M.E., 2009. An Introduction to the Origin of Sedimentary Rocks: Journal of Sedimentary Petrology, v. 41, p. 37-45
  26. -Wilshire, H.G. and McGuire, A.V., 1996. Magmatic infiltration and melting in the lower crust and upper mantle beneath the Cima volcanic field, California: Journal of Mineral Petro. v. 123, p. 354-358.