Aghanabati, A., 2000. The main sedimentary-structural basins of Iran. Geological Survey of Iran, Tehran (In Persian).
Alavi, M., 2007. Structures of the Zagros fold-thrust belt in Iran. American Journal of science, v. 307(9), p. 1064-1095, DOI:
10.2475/09.2007.02
Babazadeh, S., Ghorbani, M.R., Cottle, J.M. and Bröcker, M., 2019. Multistage tectono‐magmatic evolution of the central Urumieh–Dokhtar magmatic arc, south Ardestan, Iran: Insights from zircon geochronology and geochemistry. Geological Journal, v. 54(4), p. 2447-2471.
https://doi.org/10.1002/gj.3306
Berberian, F., Muir, I., Pankhurst, R. and Berberian, M., 1982. Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. Journal of the Geological Society, v. 139(5), p. 605-614.
https://doi.org/10.1144/gsjgs.139.5.0605
Boutroy, E., Dare, S.A., Beaudoin, G., Barnes, S.J. and Lightfoot, P.C., 2014. Magnetite composition in Ni-Cu-PGE deposits worldwide: application to mineral exploration. Journal of Geochemical Exploration, v. 145, p. 64-81.
https://doi.org/10.1016/j.gexplo.2014.05.010
Cooke, D.R., Agnew, P., Hollings, P., Baker, M., Chang, Z., Wilkinson, J.J. and Thompson, J., 2020. Recent advances in the application of mineral chemistry to exploration for porphyry copper–gold–molybdenum deposits: detecting the geochemical fingerprints and footprints of hypogene mineralization and alteration. Geochemistry: Exploration, Environment, Analysis, v. 20(2), p. 176-188.
10.1144/geochem2019-039.
Dare, S.A., Barnes, S.J., Beaudoin, G., Méric, J., Boutroy, E. and Potvin-Doucet, C., 2014. Trace elements in magnetite as petrogenetic indicators. Mineralium Deposita, v. 49, p. 785-796.
https://doi.org/10.1007/s00126-014-0529-0.
Dupuis, C. and Beaudoin, G., 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types, Mineralium Deposita, v. 46, p. 319-335.
https://doi.org/10.1007/s00126-011-0334-y
Haggerty, S., 1976. Opaque mineral oxides in terrestrial igneous rocks. Oxide minerals. Short course notes, 3. Washington DC, p. 101-300.
10.4236/wjnst.2024.142008
Harris, A.C. and Golding, S.D., 2002. New evidence of magmatic-fluid–related phyllic alteration: Implications for the genesis of porphyry Cu deposits. Geology, v. 30(4), p. 335-338.
https://doi.org/10.1130/0091-7613(2002)030.
Holliday, J. and Cooke, D., 2007. Advances in geological models and exploration methods for copper±gold porphyry deposits. Ore Deposits and Exploration Technology, v. 53, p. 791-809.
Huang, X.W., Sappin, A.A, Boutroy, É., Beaudoin, G. and Makvandi, S., 2019. Trace element composition of igneous and hydrothermal magnetite from porphyry deposits: Relationship to deposit subtypes and magmatic affinity. Economic Geology, v. 114(5), p. 917-952.
https://doi.org/10.5382/econgeo.4648.
John, D.A., Ayuso, R.A., Barton, M.D., Blakely, R.J., Bodnar, R.J., Dilles, J.H. and Vikre, P.G., 2010. Porphyry copper deposit model. Chapter B of Mineral deposit models for resource assessment: US Geological Survey Scientific Investigations Report, 169 p.
Knipping, J.L., Bilenker, L.D., Simon, A.C., Reich, M., Barra, F., Deditius, A.P. and Munizaga, R., 2015. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochimica et cosmochimica acta, v. 171, p. 15-38.
https://doi.org/10.1016/j.gca.2015.08.010.
Kusha Madan Consulting Engineers., 2019. Carrying out prospecting, general exploration, and monitoring operations in the northern and southern areas of the Bam area, 337 p.
Large, R.R., Danyushevsky, L., Hollit, C., Maslennikov, V., Meffre, S., Gilbert, S. and Thomas, H., 2009. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Economic Geology, v. 104(5), p. 635-668.
https://doi.org/10.2113/gsecongeo.104.5.635.
Liang, H.Y., Sun, W., Su, W.C. and Zartman, R.E., 2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Economic Geology, v. 104(4), p. 587-596.
https://doi.org/10.2113/gsecongeo.104.4.587.
McInnes, B.I., Evans, N.J., Fu, F.Q. and Garwin, S., 2005. Application of thermochronology to hydrothermal ore deposits. Reviews in Mineralogy and Geochemistry, v. 58(1), p. 467-498.
https://doi.org/10.2138/rmg.2005.58.18.
Mirzababaei, G., Shahabpour, J., Zarasvandi, A. and Hayatolgheyb, S., 2016. Structural controls on Cu metallogenesis in the dehaj area, kerman porphyry copper belt, Iran: a remote sensing perspective. Journal of Sciences, Islamic Republic of Iran, v. 27(3), p. 253-267.
Moradian, A., 1997. Geochemistry, geochronology and petrography of feldspathoid bearing rocks in Urumieh-Dokhtar volcanic belt, Iran. PhD thesis, University of Wollongong.
Morey, A.A., Tomkins, A.G., Bierlein, F.P., Weinberg, R.F. and Davidson, G.J., 2008. Bimodal distribution of gold in pyrite and arsenopyrite: Examples from the Archean Boorara and Bardoc shear systems, Yilgarn craton, Western Australia. Economic Geology, v. 103(3), p. 599-614.
https://doi.org/10.2113/gsecongeo.103.3.599.
Nadoll, P., Angerer, T., Mauk, J.L., French, D. and Walshe, J., 2014. The chemistry of hydrothermal magnetite: A review. Ore Geology Reviews, v. 61, p. 1-32.
https://doi.org/10.1016/j.oregeorev.2013.12.013.
Nadoll, P., Mauk, J.L., Hayes, T.S., Koenig, A.E. and Box, S.E., 2012. Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States. Economic Geology, v. 107(6), p. 1275-1292.
https://doi.org/10.2113/econgeo.107.6.1275.
Nadoll, P., Mauk, J.L., Leveille, R.A. and Koenig, A.E., 2015. Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States. Mineralium Deposita, v. 50, p. 493-515.
https://doi.org/10.1007/s00126-014-0539-y.
Nelson, S.T. and Montana, A., 1992. Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. American mineralogist, v. 77(11-12), p. 1242-1249.
Pisiak, L., Canil, D., Lacourse, T., Plouffe, A. and Ferbey, T., 2017. Magnetite as an indicator mineral in the exploration of porphyry deposits: A case study in till near the Mount Polley Cu-Au deposit, British Columbia, Canada. Economic Geology, v. 112(4), p. 919-940.
https://doi.org/10.2113/econgeo.112.4.919.
Raeisi, D., Mirnejad, H. and Sheibi, M., 2019. Emplacement mechanism of the Tafresh granitoids, central part of the Urumieh–Dokhtar Magmatic Arc, Iran: evidence from magnetic fabrics. Geological Magazine, v. 156(9), p. 1510-1526. 10.1017/S0016756818000766.
Reich, M., Deditius, A., Chryssoulis, S., Li, J.W., Ma, C.Q., Parada, M.A. and Mittermayr, F., 2013. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochimica et cosmochimica acta, v. 104, p. 42-62.
https://doi.org/10.1016/j.gca.2012.11.006.
Rezaei, M., 2017. Effective parameters in mineralization potential of economic and subeconomic porphyry copper deposits in Urumieh-Dokhtar magmatic zone: using geochemical and fluid inclusion studies. Ph. D. Thesis, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Rezaei, M., Zarasvandi, A. and Basious, S., 2024. Occurrence and chemisltry of magnetite in the Iju porphyry Cu deposit, southern part of Urumieh-Dokhtar magmatic belt. Scientific Quarterly Journal of Geosciences, v. 34(1), p. 129-131.
https://doi.org/10.22071/gsj.2023.398882.2092
Richards, J.P., 2015. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision. Ore Geology Reviews, v. 70, p. 323-345. http://dx.doi.org/10.1016/j.oregeorev.2014.11.009.
Rivas-Romero, C., Reich, M., Barra, F., Gregory, D. and Pichott, S., 2021. The relation between trace element composition of Cu-(Fe) sulfides and hydrothermal alteration in a porphyry copper deposit: Insights from the Chuquicamata underground mine, Chile. Minerals, v. 11(7), p. 671.
https://doi.org/10.3390/min11070671.
Schmid-Beurmann, P. and Bente, K., 1995. Stability properties of the CuS
2-FeS
2 solid solution series of pyrite type. Mineralogy and Petrology, v. 53, p. 333-341. DOI:
10.1007/BF01160155.
Seedorff, E., Dilles, J.H., Proffett, J.M., Einaudi, M.T., Zurcher, L., Stavast, W.J. and Barton, M.D., 2005. Porphyry deposits: Characteristics and origin of hypogene features.
https://doi.org/10.5382/AV100.10.
Sun, W.D., Liang, H.Y., Ling, M.X., Zhan, M.Z., Ding, X., Zhang, H. and Wei, Q.R., 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et cosmochimica acta, v. 103, p. 263-275.
https://doi.org/10.1016/j.gca.2012.10.054.
Tian, J., Zhang, Y., Gong, L., Francisco, D.G. and Berador, A.E., 2021. Genesis, geochemical evolution and metallogenic implications of magnetite: Perspective from the giant Cretaceous Atlas porphyry Cu–Au deposit (Cebu, Philippines). Ore Geology Reviews, v. 104084, p. 133.
https://doi.org/10.1016/j.oregeorev.2021.104084.
Ulrich, T., Long, D., Kamber, B. and Whitehouse, M., 2011. In situ trace element and sulfur isotope analysis of pyrite in a Paleoproterozoic gold placer deposit, Pardo and Clement Townships, Ontario, Canada. Economic Geology, v. 106(4), p. 667-686.
https://doi.org/10.2113/econgeo.106.4.667
Wen, G., Li, J.W., Hofstra, A.H., Koenig, A.E., Lowers, H.A. and Adams, D., 2017. Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes: Insights from the Handan-Xingtai iron district, North China Craton. Geochimica et cosmochimica acta, v. 213, p. 255- 270.
https://doi.org/10.1016/j.gca.2017.06.043.
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American mineralogist, v. 95(1), p. 185-187. 10.2138/am.2010.3371.
Yin, S., Wirth, R., He, H., Ma, C., Pan, J., Xing, J. and Zhang, X.N., 2022. Replacement of magnetite by hematite in hydrothermal systems: A refined redox-independent model. Earth and Planetary Science Letters, v. 577, 117282.
https://doi.org/10.1016/j.epsl.2021.117282.
Zarasvandi, A., Haghighatjou, N., Taghipour, N., Rezaei, M., Amiri Hoseini, M. and Zarasvandi, G., 2024. Geochemistry of trace and rare earth elements of the productive intrusions in the Kuh-e-Kapout porphyry copper deposit, Urumieh–Dokhtar magmatic arc. Petrological Journal., v. 15(2), p. 21-54. 10.22108/ijp.2024.141370.1332.
Zarasvandi, A., Heidari, M., Rezaei, M., Raith, J., Asadi, S., Saki, A. and Azimzadeh, A., 2019. Magnetite chemistry in the porphyry copper systems of Kerman Cenozoic magmatic arc, Kerman, Iran. Iranian Journal of Science and Technology, Transactions A: Science, v. 43, p. 839-862. https://dx.doi.org/10.1007/s40995-019-00677-6.
Zarasvandi, A., Rezaei, M., Adelpour, M. and Parvaneh, H., 2023a. Chemistry of Sericite, Pyrite, and Chalcopyrite in the Phyllic Alteration Zone of the Parkam and Abdar Porphyry Deposits. Scientific Quarterly Journal of Geosciences, v. 33(3), p. 139-158. 10.22071/gsj.2023.351321.2015.
Zarasvandi, A., Rezaei, M., Azizi, S., Adelpour, M. and Saki, A., 2023b. Magnetite chemistry in the Dalli porphyry Cu-Au deposit, central Urumieh-Dokhtar Magmatic Arc (UDMA). Journal of Economic Geology, v. 15(1), p. 1-25. 10.22067/econg.2023.77655.1049. https://doi.org/10.22067/econg.2023.77655.1049.
Zarasvandi, A., Rezaei, M., Raith, J.G., Pourkaseb, H., Asadi, S., Saed, M. and Lentz, D.R., 2018. Metal endowment reflected in chemical composition of silicates and sulfides of mineralized porphyry copper systems, Urumieh-Dokhtar magmatic arc, Iran. Geochimica et cosmochimica acta, v. 223, p. 36-59. https://doi.org/10.1016/j.gca.2017.11.012.
Zarasvandi, A., Rezaei, M., Raith, J.G., Taheri, M., Asadi, S. and Heidari, M., 2023c. Magnetite chemistry of the Sarkuh Porphyry Cu deposit, Urumieh–Dokhtar Magmatic Arc (UDMA), Iran: A record of deviation from the path sulfide mineralization in the porphyry copper systems, Journal of Geochemical Exploration, v. 249, p. 177-213.
https://doi.org/10.1016/j.gexplo.2023.107213
Zhao, L., Chen, H., Zhang, L., Li, D., Zhang, W., Wang, C. and Yan, X., 2018. Magnetite geochemistry of the Heijianshan Fe–Cu (–Au) deposit in Eastern Tianshan: Metallogenic implications for submarine volcanic-hosted Fe–Cu deposits in NW China. Ore Geology Reviews, v. 100, p. 422-440. http://dx.doi.org/10.1016/j.oregeorev.2016.07.022.