IntroductionOne of the most extensive Cretaceous and Paleogene deposits in Zagros are the marine sediments of the Gurpi Formation, they were first identified in the Zagros based on stratigraphy and paleontology. One of the most important researches that can be done given this formation in Zagros, is determining the exact boundaries, by calcareous nannofossil assemblages. At the Anar anticline section, the Gurpi Formation with 163 m thickness was selected which mainly consists of shale, silty shale and plagic limestone.Material and MethodsIn this study, 58 samples from Gurpi Formation have been examined. Samples were prepared following a standard smear slide method (Bown and Young 1998). All slides were studied under polarized light microscope at ×1000 magnification. Calcareous nannofossil nomenclature follows the taxonomic schemes of Perch-Nielsen (1985).Results and discussionCalcareous nannofossils recorded in the Mesozoic and Cenozoic strata are believed to be an appropriate means for biostratigraphic studies. The nannofossil zonation used in the present study is based on the Nannoplankton zonation of Sissingh (1977), Burnett (1998) and Martini (1971), respectively. As a result of this study, 39 species belonging to 21 genera of calcareous nannofossils were detected. Eight bio events were recorded and based on these bio-events, the Ceratolithoides aculeus Zone (CC20) - Nephrolithus frequens Zone (CC26) were recognized based on Sissingh (1977). Subsequently, Markalius inversus zone (NP1) was identified at the top of the Gurpi Formation.- Bio zones of the Cretaceous Seven bio zones of the zonation of Sissingh (1977) and Burnett (1998) were recognized in the Cretaceous:Ceratolithoides aculeus Zone / UC15bTPThe first nannofossil unit recorded in this study is the CC20 zone. This bio zone is recorded from the FO C. aculeus to the FO of Quadrum sissinghii. The age of this zone is late early Campanian.Quadrum sissinghii Zone/ UC15cTPThe second nannofossil unit recorded in the Gurpi Formation is the CC21 zone. This bio zone is recorded from the FO Quadrum sissinghii to the FO of Quadrum trifidum. The age of this zone is early/late Campanian.Quadrum trifidus Zone/ UC15dTP, UC15eTPThe next nannofossil unit recorded in this study is the CC22 zone. This bio zone is recorded from the FO of Quadrum trifidum to the LO of Reinhardtites anthophorus. The age of this zone is late Campanian. Tranolithus orionatus Zone/ UC15eTP, UC16TP, UC17TPThe next nannofossil unit recorded in this study is the CC23 zone. This bio zone is recorded from the LO of Reinhardtites anthophorus to the LO of Tranolithus phacelosus. The age of this zone is late late Campanian/early Maastrichtian.Reinhardtites levis Zone/ UC18TP The next nannofossil unit recorded in this study is the CC24 zone. This bio zone is recorded from the LO of Tranolithus phacelosus to the LO of Reinhardtites levis. The age of this zone is early Maastrichtian.Arkhangelskiella cymbiformis Zone/ UC19TP, UC20aTP, UC20bTPThe next biozone recorded is the CC25 zone. This bio zone is recorded from the LO of Reinhardtites levis to the FO of Micula murus. The age of this zone is early late Maastrichtian.Nephrolithus frequens Zone / UC20c, dTPThe next biozone recorded is the CC26 zone. This bio zone is recorded from the FO of Micula murus to the FO of Biantholithus sparsus. The age of this zone is late late Maastrichtian.-Bio zone of the Paleocene One bio zone of the zonation of Martini (1971) recognized at the top of Gurpi Formation:Markalius inversus ZoneThe last nannofossil unit recorded at the top of Gurpi Formation is the NP1 zone. This bio zone is recorded from the extinction of the Cretaceous flora to the FO of Cruciplacolithus tenuis. The age of this zone is Danian.ConclusionIn this study Cretaceous-Paleocene sediments have been investigated at the Gurpi Formation at Anar anticline section in northeast of Kazerun. The Gurpi Formation mainly consists of shale, silty shale and pelagic limestone. The detailed study based on calcareous nannofossils, enables the subdivision of the studied deposits into 8 bio zones. As a result of this study and based on the identified bio zones, the age of the Gurpi Formation is middle Campanian to early Danian, and K/Pg boundary is continuous at the studied interval.
-درویش زاده، ع.، 1370. زمینشناسی ایران، انتشارات نشر دانش امروز، 901 ص.
-سنماری، س.، 1396. بررسی بیواستراتیگرافی نانوفسیل های آهکی در قسمتهای فوقانی سازند گورپی و قسمتهای تحتانی سازند پابده در برش گنو (شمال غرب ایلام)، پژوهشهای دانش زمین، شماره 29،
ص 152-163.
-شهریاریگرایی، س.، کنی، ا.، امیری بختیار، ح. و جمالی، ا.م.، 1397. بررسی بیواستراتیگرافی نانوفسیل های آهکی در قسمتهای فوقانی سازند گورپی و قسمتهای تحتانی سازند پابده در برش گنو (شمال غرب ایلام)، پژوهشهای دانش زمین، دوره 9، شماره 3، ص 139-161.
-Alavi, M., 2004. Regional stratigraphy of the zagros fold thrust belt of iran and its proforland evolution, Ameracan Journal of Science, v. 304, p. 1-20.
-Bornemann, A., Aschwer, U. and Mutterlose, J., 2003. The impact of calcareous nannofossils on the pelagic carbonate accumulation across the Jurassic-Cretaceous boundary: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 199, p. 187-228.
-Bordenave, M.L., 2002. The Middle Cretaceous to Early Miocene Petroleum System in the Zagros Domain of Iran, and its prospect Evaluatio, AAPG Annual Meeting, March 10-13, 2002, Houston, Texas.
-Bown, P.R. and Young, J.R., 1998. Techniques; In: Bown, P.R. (eds.), Calcareous Nannofossil Biostratigraphy, Chapman and Hall, London, p. 16-28.
-Burnett, J.A., 1998. Upper Cretaceous, In: Bown, P.R. (eds.), Calcareous Nannofossil Biostratigraphy, British Micropalaeontological Society Publication Series, Chapman and Hall Ltd, Kluwer Academic Publisher, London, p. 132-165.
-Hadavi, F., Khosrowtehrani, K. and Senemari, S., 2007. Biostratigraphy of Calcareous Nannofossils of Gurpi Formation in North Gachsaran: Journal of Geosciences, v. 64, p. 14-23.
-Hadavi, F. and Ezadi, M., 2007. Biostratigraphy of the Gurpi Formation in Dare- Shahr section (Zagros basin), The First MAPG International Convention Conference and Exhibition, p. 28-31.
-James, G.A. and Wynd, J.G., 1965. Stratigraphic Nomenclature of Iranian Oil Consortium Agreement Area: AAPG Bulletin, v. 49, p. 2182-2245.
-Lees, J.A., 2002. Calcareous nannofossil biogeography illustrates palaeoclimate change in the Late Cretaceous Indian Ocean: Cretaceous Research, v. 23, p. 537-634.
-Martini, E., 1971. Standard Tertiary and Quaternary Calcareous Nannoplankton Zonation, Proceedings of the 2nd Planktonic Conference Roma, Italy, p. 739-785.
-Mahanipour, A. and Najafpour, A., 2016. Calcareous nannofossil assemblages of the Late Campanian- Early Maastrichtian form Gurpi Formation (Dezful embayment, SW Iran): Evidence of a climate cooling event: Geopersia, v. 6(1), p. 129-148.
-Motiei, H., 1995. Petroleum Geology of Zagros, Geological Survey of Iran (in Farsi), 589 p.
-Najafpour, A., Mahanipour, A. and Dastanpour, M., 2015. Calcareous nannofossil biostratigraphy of Late Campanian-Early Maastrichtian sediments in southwest Iran, Arabian Journal of Geoscience, v. 8, p. 6037-6046.
-Okada, H. and Bukry, D., 1980. Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation, Marine Micropaleontology, v. 5, p. 321–325.
-Perch-Nielsen, K., 1985a. Mesozoic calcareous nannofossils, In: Bolli, H.M., et al. (eds.), Plankton Stratigraphy, Cambridge University Press, p. 329-426.
-Perch-Nielsen, K., 1985b. Cenozoic Calcareous Nannofossils, In: Bolli, H. M., Saunders, J. B., Perch-Nielsen, K. (eds.), Plankton Stratigraphy, Cambridge University Press, p. 427-554.
-Senemari, S. and Sohrabi Molla Usefi, M., 2012. Evaluation of Cretaceous–Paleogene boundary based on calcareous nannofossils in section of Pol Dokhtar, Lorestan, southwestern Iran, Arabian Journal of Geosciences, v. 6, p. 3615-3621.
-Sissingh, W., 1977. Biostratigraphy of cretaceous calcareous nannoplankton: Geologie En Minjbouw, v. 56, p. 37-65.
-Thierstein, H.R., 1976. Mesozoic calcareous nannoplankton Biostratigraphy of Marine Sediments: MarineMicropaleontology, v. 1, p. 325-362.
-Villa, G., Fioroni, C., Pea, L., Bohaty, S. and Persico, D., 2008. Middle Eocene-late Oligocene climate variability: Calcareous nannofossil response at Kerguelen Plateau, Site 748: Marine Micropaleontology, v. 69, p. 173-192.
-Watkins, D.K., Wise Jr, S.W., Pospichal, J.J. and Crux, J., 1996. Upper Cretaceous calcareous nannofossil biostratigraphy and paleoceanography of the Southern Ocean, In: Moguilevsky, A., Whatley, R. (eds.), Microfossils and oceanic environments, University of Wales, Aberystwyth Press, p. 355-381.
-Watkins, D.K. and Self-Trail, J.M., 2005. Calcareous nannofossil evidence for the existence of the Gulf Stream during the late Maastrichtian, Paleoceanography, v. 20, doi:10.1029/2004PA001121.
-Zahiri, A.H., 1982. Maastrichtian microplankton of well Abteymur-1 SW Iran, NIOC, Exploration and Production Division Technology Note, No. 226, Unpublished.
-Wise, S.W., 1988. Mesozoic-Cenozoic history of calcareous nannofossils in the region of Southern Ocean: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 67, p. 157-179.
-Young, J.R. and Bown, P.R., 1998. Cenozoic calcareous nannoplankton classification, Journal of nannoplankton Research, v. 19, p. 36-47.
senemari, S. (2020). Biostratigraphy and determination of the K/Pg boundary in the upper Cretaceous sediments in northeast Kazerun, Fars zone (Zagros). Researches in Earth Sciences, 11(1), 21-31. doi: 10.52547/esrj.11.1.21
MLA
saeedeh senemari. "Biostratigraphy and determination of the K/Pg boundary in the upper Cretaceous sediments in northeast Kazerun, Fars zone (Zagros)". Researches in Earth Sciences, 11, 1, 2020, 21-31. doi: 10.52547/esrj.11.1.21
HARVARD
senemari, S. (2020). 'Biostratigraphy and determination of the K/Pg boundary in the upper Cretaceous sediments in northeast Kazerun, Fars zone (Zagros)', Researches in Earth Sciences, 11(1), pp. 21-31. doi: 10.52547/esrj.11.1.21
VANCOUVER
senemari, S. Biostratigraphy and determination of the K/Pg boundary in the upper Cretaceous sediments in northeast Kazerun, Fars zone (Zagros). Researches in Earth Sciences, 2020; 11(1): 21-31. doi: 10.52547/esrj.11.1.21