ارزیابی طول دوره‌های خشک وابسته به بارش با نگرش دورنمای تغییر اقلیم در استان کهگیلویه و بویراحمد

نوع مقاله : مقاله پژوهشی

نویسنده

گروه جغرافیا، دانشکده ادبیات و علوم انسانی ، دانشگاه یاسوج، یاسوج، ایران

چکیده

در این پژوهش برای بررسی طول دوره‌های خشک در استان کهگیلویه و بویراحمد ابتدا پایگاه ماتریس داده‌ای از بارش روزانه برای دوره آماری 2020-1990 مربوط به 25 ایستگاه بارانسنجی و سینوپتیک استان تشکیل گردید. جهت تعیین میزان تشابه رفتاری داده‌ها در تمامی پهنه‌ها و تعریف و تخصیص تمامی ایستگاه‌ها بر مبنای یک معیار همگن، تست همگنی (HT) انجام شد تا صحت‌سنجی داده‌ها مبنایی برای مطالعات پایه قرار گیرند. داده‌های بارش به کمک آزمون نیکوئی برازش (Goodness of fit test)، برای تعیین درجه اختلاف داده‌های مشاهداتی و مورد انتظار برازش شدند.برای تداوم و زمان برگشت دوره‌ها از الگوریتم توزیع تجربی مرتبه دوم زنجیره مارکوف استفاده شد. نتایج نشان داد که رخداد روز بارانی پس از یک روز بارانی دیگر (n11)، در مناطق مرطوب شرقی با 21 درصد احتمال از درصد رخداد کمی برخوردار است. در مقابل در پهنه‌های خشک استان (مرکز و جنوب)، فراوانی و درصد رخداد یک دوره خشک به دنبال دوره خشک دیگر یعنی تابع (n00) به ترتیب با 2159 روز و 80 درصد احتمال رخداد محتمل‌تر است. در نهایت پیش‌یابی تغییرات اقلیمی با نگرش ارزیابی دوره‌های خشک با الگوریتم مدل HADGEM2-ES مربوط به گزارش پنجم هیئت بین دول تغییر اقلیم (IPCC-IR5)، در دهه میانی نشان داد که پهنه‌های مرطوب استان مانند یاسوج، سی‌سخت و کاکان پهنه‌های خطرپذیر در برابر نوسانات اقلیمی هستند و به­طور میانگین 15 تا 18 درصد خشک‌تر خواهند شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation the length of dry spells dependent of Precipitation with approach of climate change in Kohgiluyeh and Boyer-Ahmad provinces

نویسنده [English]

  • seyed keramat hashemi ana
Department of Geography, Faculty of Literature and Humanities, Yasouj University, Yasouj, Iran
چکیده [English]

Introduction
The study variability of precipitation change in Iran is more important than other climatic variables. Precipitation changes can control the length of dry spells in arid and semi-arid such as Iran. Extraction and analysis of precipitation, is a good criterion for understanding the behavioral mechanism of Dry Spells. Recognition the change in length of Dry Spells such as the frequency of events, the length of periods, its severity and continuity is very important in environmental planning. Therefore, study of the occurrence and sequence of dry Spells is great importance in climate change studies.
Materials and methods
for identify and describe the precipitation, the firt step, provided database matrices of precipitation data in a period of 30 years from (since1990-2020) for 8 precipitation stations in the province area. In second step for evaluate the behavioral similarity of station data and assignment of all stations to a homogeneity criterion, was performed Homogeneity test (HT). by used and the help of programming and coding in MATLAB and R software, is calculated on a seasonal and monthly scale with a threshold of 5 mm to be the basis for extracting and zoning dry Spells in ArcGIS software. The behavior of dry Spells with different continuities was analyzed and zoned using the second-order Markov statistical chain. In the last step for predict the behavior of dry spells in the middle decade (2050) by referring to the scenarios of HADGEM2-ES model related to the fifth report of the intergovernmental panel of climate change (IPCC-IR5), to downscalling and reproduce data in the statistical environment of SDSM software for all stations. In the final step, the seasonal behavior and the area of dry periods in the future horizon were plotted. How to do each step will be described in the research sections.
Results and discussion
 In order to determine the degree of homogeneity and to determine the stations that are in the spatial range τ_4 and τ_3, the Husking torque homogeneity test was performed to determine the data and the outlying and heterogeneous stations. According to the definition of stations, the test component H1 for Lcv, H2 for the combination of Lcv and Lskew, and finally H3 for the combination of Lkurt and Lskew, where the statistics inconsistency is less than 1, are considered homogeneous stations. Stations with more than one statistic were excluded from the study and other stages of the research. Lodab and Abdehgah stations had such conditions. Mean and output of all stations for statistics at level /.43. Adjusted (average of H1 to H3 statistics). In fact, this method minimizes inter-station variations in linear torque to increase the reliability of the network data usage.
 In general, the study of wet and dry monthly events showed that throughout the province, dry periods with a duration of 30 days or more have the highest probability of occurrence and the shortest return period. Based on the output of monthly emission scenarios of climate change models, the length of dry spells in the province in the cold seasons of the year with an average (29%) has a more significant increase than the warm periods of the year with an average (19%). It can be said that in tropical and arid regions the return period with short-term continuities and in mountainous and cold northern regions, the return period with long-term continuities is more dominant. Wetlands of the province are more vulnerable to drought and climate change and from west to east and from south to north increases the area of dry areas in the province. In other words, the border of arid regions shifts to the east and north.
Conclusion
The change in the length of dry periods in the arid and super-arid zones of the south and west of the province, especially cities such as Gachsaran, Imamzadeh Jafar and Dehdasht, which have polluting industries such as petrochemical and oil industry, is a serious warning for the dominant industries such as water resources, agriculture and tourism. Is. Challenges arising from the drying up of water resources such as Hur al-Azim wetland and declining discharges of rivers and dams in the neighborhood in the southern regions of the province, the challenges arising from climate change such as increasing the length of dry spells intensify. It’s necessary for planning and adaptation to climate change and management of available water resources in all areas of the province, especially in the northern and eastern area, where the possibility of long-term dry periods is high and inevitable.

کلیدواژه‌ها [English]

  • Precipitation
  • Climate change
  • Dry spells
  • Kohgiloyeh and boyerahmad
  • Climate Modeling
-ذوالفقاری، ح. و میرزایی، م.، 1396. تحلیل فضایی و پهنه­بندی دوره­های خشک اقلیمی در ایران براساس شاخص DDSLR، مجله مخاطرات محیط طبیعی، شماره 6(12)، ص 1-18.
-محمودی، پ.، پروین، ن. و رضائی،ج.، 1392. طول دوره‌های‌ خشک و پهنه‌بندی آن در ایران، فصلنامه مطالعات جغرافیایی مناطق خشک، شماره 4(13)، ص 85-106.‎
-مسعودیان، س.ا.، 1390. آب و هوای ایران، چاپ اول، انتشارات شریعه توس، مشهد، 46 ص.
-هاشمی‌عنا، س.ک.، 1400. طبقه­بندی تغییرات طول دوره­های خشک وابسته به بارش در ایران، مجله‌ جغرافیای طبیعی، شماره 14(53)، ص 39-55.‎
-هاشمی عنا، س.ک.، خسروی، م. و طاوسی، ت.، 1395. شبیه‌سازی طولانی‌ترین طول دوره‌های خشک با رویکرد تغییر اقلیم در گستره ایران زمین، مجله مناطق خشک سبزوار، شماره 6 (14)، ص 18-33.
 
 
 
-Adane, G.B., Hirpa, B.A., Lim, C.H. and Lee, W.K., 2021. Spatial and Temporal Analysis of Dry and Wet Spells in Upper Awash River Basin, Ethiopia. Water, v. 12(11), p. 3051.
-Aydogan, M.K. and Onsoy, H., 2016. Regional flood frequency analysis for Coruh Basin of Turkey with L-momentsapproach, Journal of Flood Risk Management, v. 9(1), p. 69-86.
-Bouagila, B. and Sushama, L., 2013. On the current and future dry spell characteristics over Africa, Atmosphere, v. 4(3), p. 272-298. ‏
-Breinl, K. and Van Loon, A.F., 2018. Water shortages worsened by reservoir effects Nat. Sustain, v. 1, p. 617-22.
-Breinl, K., Di Baldassarre, G., Mazzoleni, M., Lun, D. and Vico, G., 2020. Extreme dry and wet spells face changes in their duration and timing. Environmental Research Letters, v. 15(7), p. 074040.
-Caloiero, T., Coscarelli, R., Ferrari, E. and Sirangelo, B., 2015. Analysis of dry spells in southern Italy (Calabria), Water, v. 7(6), p. 3009-3023.
-Carlos, M., Nagesh Kumar, D. and Sorez, F., 2019. Optimal reservoir operation for irrigation of multiple crops using elitist-mutated particle swarm optimization. Hydrology Science Journal, v. 52(4), p. 686-701.
-Cindrić, K., Pasarić, Z. and Gajić-Čapka, M., 2010. Spatial and temporal analysis of dry spells in Croatia. Theoretical and applied climatology, v. 102(1-2), p. 171-184.
-Feng, T., Tipton, Z., Xia, L. and Chang, Y., 2020. Evaluation of CORDEX regional climate models in simulating extreme dry spells in Southwest China. Frontiers in Earth Science, 294 p.
-Guzman-Morales, J. and Gershunov, A., 2019. Climate change suppresses Santa Ana winds of Southern California and sharpens their seasonality Geophys. Res. Lett., v. 46, p. 2772-2780.
-Hosking, k. and Wallis, J.R., 1997. Regional Frequency Analysis: An Approach Based on L-Moments, Cambridge University Press.
-Li, Z., Li, Y., Shi, X. and Li, J., 2011. The characteristics of wet and dry spells for the diverse climate in China. Global and Planetary Change, v. 149, p. 14-19.
-Mengistu, M.G., Olivier, C., Botai, J.O., Adeola, A.M. and Daniel, S., 2021. Spatial and temporal analysis of the mid-summer dry spells for the summer rainfall region of South Africa. Water SA, v. 47(1), p. 76-87.
-Okoli, K., Mazzolenni, M., Breinl, K. and Di Baldassarre, G., 2019. A systematic comparison of statistical and hydrological methods for design flood estimation Hydrol. Res., v. 50, p. 1665-1678.
-Ratan, R. and V., 2013. Wet and dry spell characteristics of global tropical rainfall Water Resour. Res., v. 49, p. 3830-3841.
-Ruiz-Sinoga, J.D., Garcia-Marin, R., Gabarron-Galeote, M.A. and Martinez-Murillo, J. F., 2016. Analysis of dry periods along a pluviometric gradient in Mediterranean southern Spain. Int. J. Climatol., v. 32, p. 1558-1571.
-Sánchez, E., Domínguez, M., Romera, R., de la Franca, N.L., Gaertner, M.A., Gallardo, C. and Castro, M., 2011. Regional modeling of dry spells over the Iberian Peninsula for present climate and climate change conditions, Climatic change, v. 107(3-4), p. 625-634. ‏
-Selvaraj, R.S. and Selvis, T., 2010. Stochastic modelling of daily precipitation at ADUTHURAI. International, p. 20-29.
-Sirangelo, B., Caloiero, T., Coscarelli, R. and Ferrari, E., 2019. A stochastic approach for the analysis of long dry spells with different threshold values in southern Italy, Water, v. 11(10), p. 20-36.
-Thoithi, W., Blamey, R.C. and Reason, C.J., 2021. Dry spells, wet days, and their trends across Southern Africa during the summer rainy season. Geophysical Research Letters, v. 48(5), p. 20-34.
-Tichavský, R., Ballesteros-Cánovas, J.A., Šilhán, K., Tolasz, R. and Stoffel, M., 2019. Dry spells and extreme precipitation are the main trigger of landslides in Central Europe. Scientific reports, v. 9(1), p. 1-10.
-Wilks, D.S., 2018. The stippling shows statistically significant grid points, how research results are routinely overstated and over interpreted, and what to do about it Bull. Am. Meteorol. Soc., v. 97, p. 22-36.
-Xia, D., She, J., Song, J., Du, H., Chen, J. and Wan, L., 2013. Spatio-temporal variation and statistical characteristic of extreme dry spell in Yellow River Basin, China. Theoretical and applied climatology, v. 112(1-2), p. 201-213. ‏