مدل عددی تکتونیک کششی در تخمین تنش مورد نیاز ریزش بلوک‌ها در گسل‌های نرمال

نوع مقاله : مقاله پژوهشی

نویسنده

گروه میراث طبیعی، پژوهشکده گردشگری، پژوهشگاه میراث فرهنگی و گردشگری، تهران، ایران

چکیده

مقدمه
زمین­لرزه­های گرانشی متاثر از تکتونیک کششی در پوسته هستند که برخلاف سازوکارهای امتدادلغز و فشاری که انرژی الاستیک بر گرانش غلبه دارد، گرانش مسئول ریزش گسلی فرادیواره و رخداد زمین­لرزه است. بنابراین گسیل انرژی بصورت امواج الاستیک پس از دوره بین­لرزه­ای، در گسلش نرمال، متفاوت از دیگر سازوکارهای گسلی است. با افزایش حجم توده­ی درگیر و نیز شیب گسل نرمال، جابجایی عمودی بزرگتر می­شود که منجر به انرژی لرزه­ای آزاد شده بزرگتر خواهد شد. در نتیجه، بزرگای زمین­لرزه بیشتر می­شود. هرچند به­طور معمول، زاویه شیب فعال شدن گسل­های نرمال در حدود 60 درجه در نظر گرفته می­شود، اما اگر اصطکاک داخلی سنگ­ کم باشد، میزان شیب کمتری مورد انتظار است. بنابراین در این شرایط انرژی گرانشی آزاد شده توانایی گسیل انرژی لرزه‌ای زیاد را نخواهد داشت. نمونه­های طبیعی از مدل عددی در این مطالعه می­تواند منطبق بر موقعیت­های ژئودینامیکی باشد که با فعالیت گسترده گسل کششی و زمین­لرزه­های مرتبط مشخص می­شود. افزون بر این، بحث تقسیم انرژی در زمین­لرزه­ها مطرح است و انرژی پتانسیل ذخیره شده توسط حجم درگیر در طول ریزش هم­لرزه با انرژی استنتاج شده از بزرگای زمین­لرزه قابل مقایسه و تحلیل است. صرف نظر از منشأ زمین­لرزه­ (الاستیک یا گرانشی)، انرژی پتانسیل محاسبه می­شود که نشان می­دهد در تخصیص انرژی، انرژی موجود نسبت به انرژی آزاد شده توسط امواج زمین­لرزه چه نسبتی دارد. بنابراین گسیل انرژی توسط سایر پدیده­های زمین­شناسی (گرمایش برشی، شار حرارتی و مهمتر از همه شکستگی)، مطابق با مطالعات پیشین می­تواند مطرح شود. در این تحقیق، تخمین تنش مورد نیاز برای وقوع ریزش بلوک­ها در گسل­های نرمال از طریق مدل­سازی بلوک دولایه­ای­­ با شرایط پوسته فوقانی شکننده بررسی شده است. لذا نازک شدگی پوسته پایینی در طول دوره­های ثابت بین­لرزه­ای در نظر گرفته شده است و بنابراین در کنار محیط کششی، تغییر شکل پیوسته برشی نیز اعمال شده است. با دانستن نرخ کشش در مرحله بین­لرزه­ای، تنش لازم برای گسیختگی تمام ضخامت پوسته شکننده مورد آزمون، تخمین زده می­شود.
مواد و روش­ها
در این مقاله در ادامه کار دوگلیونی (Doglioni, 2015)، با فرض انتقال تغییر شکل ثابت پوسته پایینی شکل‌پذیر به سمت بالا ولی ویژگی­های متفاوت مواد سنگی و محدوده­ی شکننده توسط اتساع در یک گوه‌­ی مزدوج با گسل نرمال فعال اصلی، از طریق مدل­سازی بلوک شامل دولایه­­ ساده با شرایط پوسته فوقانی شکننده، رفتار گسل­ها بررسی شد. 
به منظور آزمایش مدل لرزه‌ای، مدل‌سازی دینامیکی اجزاء محدود با استفاده از نرم‌افزار کامسول انجام شده است. در اینجا به طور ویژه بر روی سقوط هم­لرزه­ فرادیواره تمرکز شده است و زوایای شیب گسل­های مختلف اتخاذ شده­اند. مدل‌ دینامیکی اجزاء محدود در این مطالعه که به­منظور سقوط هم­لرزه­ فرادیواره متمرکز است، از تقریب کرنش صفحه دوبعدی و رئولوژی الاستیک مدل دوگلیونی (Doglioni, 2015) با ویژگی­های شخصی سازی شده واحدهای شکننده رسوبی (مدول یانگ: 4.5e+10 Pa؛ نسبت پواسون: 0.15) بهره می­برد. داده­های بیشتر مدل در جدول 1 ارائه شده است. این مدل 30 کیلومتر عمق و 100 کیلومتر عرض دارد و در دو قسمت متمایز توسط گسل­های نرمال جدا شده است. شبکه اجزاء محدود از عناصر لاگرانژ خطی مثلثی ساخته شده است. گرانش به عنوان نیروی تنه­ای به همه عناصر با فرض چگالی ثابت (2850 کیلوگرم بر متر مکعب) و شتاب گرانش (9.81m∙s-2) اعمال می­شود. رفتار گسل به صورت یک بدنه تماس (جفت­های تماسی) مدل‌سازی می‌شود که در مکان و زمان، متفاوت است (حالت قفل یا باز).
بحث و نتایج
در مطالعه حاضر، ترتیب المان­های مدل مبتنی بر یک شبکه غیرساختاری به­گونه­ای است تا بتوان از تاثیرگذاری ساختار ماتریس‌های اسپارس بر عملکرد عملیات جبر خطی جلوگیری کرد. در حالی که پوسته پایینی به طور پیوسته دارای رفتار برشی است، پوسته بالایی شکننده قفل می­شود و بنابر نتیجه کار، یک گوه انبساطی تصور می­شود که عرض این مثلث در اینجا به صورت فرضی به گونه­ای تصویر شده است که بر یک بخش آنتی تتیک نسبت به گسل قفل شده که حدود دارای 5/3 کیلومتر ضخامت است، تاثیر کند. با نازک شدگی پوسته پایینی شکل­پذیر توسط جریان ویسکوز در طول دوره ثابت بین­لرزه­ای، زون انتقال شکننده-شکل­پذیر (BDT) با یک گرادیان فشار مشخص می­شود در حالی که پوسته پایینی ویسکوز-پلاستیک، تغییر شکل پیوسته برشی نشان می­دهد.
نتیجه­گیری
برش پیوسته در پوسته پایینی مدل اجزاء محدود، نشان دهنده قفل شدن پوسته بالایی شکننده در مرحله بین­لرزه­ای از یک چرخه لرزه­ای است. با اعمال کشش 2 میلی­متر/سال در مرحله بین­لرزه­ای، پوسته شکننده با ضخامت حدود 12 کیلومتر به حدود 160 مگاپاسکال نیاز دارد تا تحت کشش گسیخته شود. بنابراین، با افزایش لغزش تجمعی از مرز دو لایه یعنی BDT به سمت شوک اصلی، 50 درصد شکستگی­های حاصل از دوره بین­لرزه­ای دوباره بسته (ریکاوری) می­شوند. با توجه به سرعت کمتر کشش در مدل حاضر نسبت به مدل­های پیشین، اختلاف نتیجه تنش مورد نیاز برای شکست پوسته شکننده می­تواند ارتباط معنا داری با نرخ کشش داشته باشد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A numerical model of extensional tectonics for estimating the stress required for the collapse of normal fault blocks

نویسنده [English]

  • Pouya Sadeghi-Farshbaf
Department of Natural Heritage, Research Institute of Cultural Heritage and Tourism (RICHT), Tehran, Iran
چکیده [English]

Introduction
In gravity earthquakes that are affected by extensional tectonics in the crust, contrary to the dominance of elastic energy over gravity in strike-slip and compressional mechanisms, gravity is responsible for hanging wall collapse and earthquake occurrence. Therefore, in normal faulting, the release of energy in the form of elastic waves after the interseismic period is different from other faulting mechanisms. With the increase in the volume of the involved mass and the dip of the normal fault, the vertical displacement becomes larger, which leads to a larger released seismic energy and, consequently, an increase in the intensity of the earthquake. Although normally, the dip angle of activation of normal faults is considered to be around 60 degrees, if the internal friction of the rock is low, a lower dip is expected. Therefore, in this situation, the released gravitational energy will not have the ability to emit much seismic energy. The natural examples of the numerical model resulting from this study can be compatible with geodynamic situations that are characterized by the broad and well-known activity of extensional tectonics and related earthquakes. In addition, energy partitioning is important in earthquakes, and the potential energy stored by the volume involved during coseismic collapse can be compared and analyzed with the energy deduced from the magnitude of the earthquake. Regardless of the origin of the earthquake, potential energy indicates the energy allocation ratio, i.e., the ratio of the available energy to the energy released by the earthquake waves. Therefore, the issue of energy emission from other geological phenomena can be raised, according to previous studies. In this research, the estimation of the stress required for the occurrence of block collapse in normal faults has been investigated through the modeling of a two-layered block with brittle upper crust conditions. Therefore, the thinning of the lower crust during the interseismic stationary periods has been considered, and therefore, along with the extensional tectonics, continuous shearing deformation has also been applied. By knowing the extension rate in the interseismic stage, the stress required to break the entire thickness of the tested brittle crust is estimated.
Materials and Methods
In this article, in continuation of Doglioni's work (Doglioni, 2015), assuming the transfer of the constant deformation of the lower ductile crust upwards, but the different characteristics of the rock materials and the brittle range due to expansion in a conjugate wedge with the main active normal fault, the behavior of faults was investigated through block modeling consisting of a simple double layer with brittle upper crust conditions. It is assumed that the lateral changes in mantle deag with viscous-plastic behavior control the tectonic conditions at the plate boundaries and deformation is transferred from the base of the lithosphere to the earth's surface. Due to the brittle behavior of the upper crust, shallow deformation occurs periodically and the energy accumulated over hundreds of years is released in a very short period of time.
Results and Discussion
In this study, the order of the model elements is based on a non-structured network in such a way that it prevents the influence of the structure of Sparse matrices on the performance of linear algebra operations. While the lower crust continuously has a shearing behavior, the upper brittle crust is locked, and according to the results, an expansion wedge is imagined, and the width of this triangle is depicted here in such a way that it affects the locked fault with a thickness of about 3.5 km. As the ductile lower crust is thinned by viscous flow during the interseismic stationary period, the brittle-ductile transition zone (BDT) is characterized by a pressure gradient, while the viscous-plastic lower crust shows continuous shear deformation.
 
Conclusion
Continuous shear in the lower crust of the finite element model can indicate the locking of the brittle upper crust in the interseismic period of a seismic cycle. By applying tension of 2 mm per year in the interseismic stage, the brittle crust with a thickness of about 12 km needs about 160 MPa to break under tension. Therefore, the increase of accumulated slip from the boundary of two layers, i.e. BDT, towards the mainshock, 50% of the fractures resulting from the interseismic period are closed again (recovery). Considering the lower extension rate in the current model compared to the previous models, the difference in the result of stress required to break the brittle crust can have a significant relationship with the extension rate.  

کلیدواژه‌ها [English]

  • Interseismic
  • Gravitational earthquake
  • Involved volume
  • Fault
  • Friction
 
Anderson, E.M., 2012. Faulting, Fracturing and Igneous Intrusion in the Earth's Crust. Geological Society of London.
Barba, S., Carafa, M.M. and Boschi, E., 2008. Experimental evidence for mantle drag in the Mediterranean. Geophysical Research Letters, v. 35(6).
Barba, S., Carafa, M.M., Mariucci, M.T., Montone, P. and Pierdominici, S., 2010. Present-day stress-field modelling of southern Italy constrained by stress and GPS data. Tectonophysics, v. 482(1-4), p. 193-204.
Bormann, P. and Di Giacomo, D., 2011. The moment magnitude M w and the energy magnitude M e: common roots and differences. Journal of Seismology, v. 15, p. 411-427.
Carminati, E., Doglioni, C. and Barba, S., 2004. Reverse migration of seismicity on thrusts and normal faults. Earth-Science Reviews, v. 65(3-4), p. 195-222.
Chao, B.F., Gross, R.S. and Dong, D.N., 1995. Changes in global gravitational energy induced by earthquakes. Geophysical Journal International, v. 122(3), p. 784-789.
Chiarabba, C., Jovane, L. and DiStefano, R., 2005. A new view of Italian seismicity using 20 years of instrumental recordings. Tectonophysics, v. 395(3-4), p. 251-268.
Chopra, A.K., 2001. Dynamics of structures: Theory and applications to earthquake engineering (2nd ed.).
Dahlen, F.A., 1977. The balance of energy in earthquake faulting. Geophysical Journal International, v. 48(2), p. 239-261.
Dempsey, D., Ellis, S., Archer, R. and Rowland, J., 2012. Energetics of normal earthquakes on dip-slip faults. Geology, v. 40(3), p. 279-282.
Doglioni, C., Barba, S., Carminati, E. and Riguzzi, F., 2011. Role of the brittle–ductile transition on fault activation. Physics of the Earth and Planetary Interiors, v. 184(3-4), p. 160-171.
Doglioni, C., Barba, S., Carminati, E. and Riguzzi, F., 2014. Fault on–off versus coseismic fluids reaction. Geoscience Frontiers, v. 5(6), p. 767-780.
Doglioni, C., Carminati, E., Petricca, P. and Riguzzi, F., 2015. Normal fault earthquakes or graviquakes. Scientific Reports, v. 5(1), p. 1-12.
Frank, F.C., 1965. On dilatancy in relation to seismic sources. Reviews of Geophysics, v. 3(4), p. 485-503.
Fulton, P.M. and Rathbun, A.P., 2011. Experimental constraints on energy partitioning during stick–slip and stable sliding within analog fault gouge. Earth and Planetary Science Letters, v. 308(1-2), p. 185-192.
Ghanbari, E., 1995. Geology and Mapping Fractures for Earthquake Hazard Study of Tabriz- Marand- Salmas Regions Azerbaijan- Iran. 17 th International Cartographic Conference 10 th General Assembly of ICA Barcelona- Catalunya- Spain.
Grigull, S., 2011. Insights into the rheology of rocks under brittle-ductile deformation conditions from an exhumed shear array in the Southern Alps: Victoria University of Wellington New Zealand, 198 p.
Hanks, T.C. and Bakun, W.H., 2002. A bilinear source-scaling model for M-log A observations of continental earthquakes. Bulletin of the Seismological Society of America, v. 92(5), p. 1841-1846.
Holland, M., Van Gent, H., Bazalgette, L., Yassir, N., Strating, E.H.H. and Urai, J.L., 2011. Evolution of dilatant fracture networks in a normal fault—Evidence from 4D model experiments. Earth and Planetary Science Letters, v. 304(3-4), p. 399-406.
Kanamori, H. and Rivera, L., 2006. Energy partitioning during an earthquake. Ch. 1: 3–13,  American Geophysical Union.
Leonard, M., 2010. Earthquake fault scaling: Self-consistent relating of rupture length, width, average displacement, and moment release. Bulletin of the Seismological Society of America, v. 100(5A), p. 1971-1988.
Leonard, M., 2010. Earthquake fault scaling: Self-consistent relating of rupture length, width, average displacement, and moment release. Bulletin of the Seismological Society of America, v. 100(5A), p. 1971-1988.
Lowman, J.P., 2011. Mantle convection models featuring plate tectonic behavior: An overview of methods and progress. Tectonophysics, v. 510(1-2), p. 1-16.
Lucente, F.P., De Gori, P., Margheriti, L., Piccinini, D., Di Bona, M., Chiarabba, C. and Agostinetti, N.P., 2010. Temporal variation of seismic velocity and anisotropy before the 2009 MW 6.3 L'Aquila earthquake, Italy. Geology, v. 38(11), p. 1015-1018.
Marone, C., 1998. Laboratory-derived friction laws and their application to seismic faulting. Annual Review of Earth and Planetary Sciences, v. 26(1), p. 643-696.
Okamoto, T. and Tanimoto, T., 2002. Crustal gravitational energy change caused by earthquakes in the western United States and Japan. Earth and Planetary Science Letters, v. 195(1-2), p. 17-27.
Pittarello, L., Di Toro, G., Bizzarri, A., Pennacchioni, G., Hadizadeh, J. and Cocco, M., 2008. Energy partitioning during seismic slip in pseudotachylyte-bearing faults (Gole Larghe Fault, Adamello, Italy). Earth and Planetary Science Letters, v. 269(1-2), p. 131-139.
Ruina, A., 1983. Slip instability and state variable friction laws. Journal of Geophysical Research: Solid Earth, v. 88(B12), p. 10359-10370.
Scholz, C.H. and Contreras, J.C., 1998. Mechanics of continental rift architecture. Geology, v. 26(11), p. 967-970.
Schorlemmer, D., Wiemer, S. and Wyss, M., 2005. Variations in earthquake-size distribution across different stress regimes. Nature, v. 437(7058), p. 539-542.
Šuklje, L., 1969. Rheological aspects of soil mechanics – Wiley-Interscience, London, 571 p.
Terakawa, T., Zoporowski, A., Galvan, B. and Miller, S.A., 2010. High-pressure fluid at hypocentral depths in the L'Aquila region inferred from earthquake focal mechanisms. Geology, v. 38(11), p. 995-998.
Vaníček, I., 2013. The importance of tensile strength in geotechnical engineering. Acta Geotechnica Slovenica, v. 10(1), p. 5-17.