مطالعات زمین شناسی، دگرسانی و میانبارهای سیال در زون‌های کانه زایی سولفیدی و طلای نبی جان، شمال تبریز، استان آذربایجان شرقی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران

2 گروه زمین شناسی، دانشکده علوم، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

مقدمه
منطقه نبی‌جان در فاصله 20 کیلومتری جنوب‌غرب کلیبر در استان آذربایجان شرقی و در شمال‌غرب ایران قرار دارد. طبق تقسیمات پهنه‌های ساختاری ایران (Aghanabati, 2004) این منطقه جزئی از بخش غربی کمربند ماگمایی البرز- آذربایجان محسوب می‌شود و از نظر متالوژنی در پهنه فلززایی اهر- ارسباران قرار گرفته است (Castro et al, 2013). پهنه فلززایی اهر- ارسباران یکی از مهم‌ترین و غنی­ترین پهنه‌های فلززایی بویژه برای عناصر طلا، مس و مولیبدن در شمال غرب و ایران است (Jamali et al, 2012). تاکنون پژوهش‌های زمین‌شناسی متعددی در خصوص ژئوشیمی، کانه­زایی و دگرسانی در زون ارسباران و پیرامون منطقه نبی‌جان توسط محققین مختلف صورت گرفته است. بر اساس مطالعات اکتشافی صورت گرفته توسط شکوئی (Shekouei, 2003) یک منطقه امیدبخش برای عناصر طلا و مس در نبی جان معرفی شده است. بر اساس مطالعات مذکور (حفر ترانشه و گمانه) توسط سازمان زمین­شناسی و اکتشافات معدنی کشور، حدود 300 هزار تن کانسنگ طلا در زون­ها و رگه­های سیلیسی با عیار متوسط 37/1 گرم در تن تخمین زده شده است. محققین قبلی بیشتر در خصوص زمین­شناسی، ژئوشیمی، کانی­سازی و دگرسانی در منطقه نبی جان مطالعاتی انجام داده­اند. در این نوشتار سعی شده است ضمن توصیف ویژگی‌های زمین‌شناسی، کانه‌زایی و دگرسانی در منطقه نبی‌جان، مطالعات جدیدی برای اولین بار بر اساس میانبارهای سیال موجود در رگه –رگچه­های کوارتزی- سولفیدی  به منظور تعیین شرایط فیزیکوشیمیایی سیالات کانه‌ساز و ژنز کانسار انجام گیرد.
مواد و روش­ها
این پژوهش شامل دو بخش بررسی‌های صحرایی و آزمایشگاهی است. در مطالعات صحرایی، رگه‌های کانه‌دار شناسایی شد و چگونگی ارتباط آنها با سنگ‌های میزبان و پهنه‌های دگرسانی مورد بررسی قرار گرفت و نمونه‌برداری از آنها برای بررسی‌های آزمایشگاهی انجام شد. در این راستا 60 نمونه از واحدهای سنگی میزبان و رخنمون‌های کانه‌زایی برداشت شد. در طی مطالعات آزمایشگاهی، 20 مقطع نازک و 5 مقطع صیقلی تهیه گردید و در دانشگاه تبریز مورد بررسی‌های سنگ‌نگاری و کانه‌نگاری قرار گرفت.
به منظور شناخت ماهیت فیزیکوشیمیایی سیال کانه‌ساز و بررسی روند تغییرات شیمی و دمای سیالات کانه‌ساز در طی نهشت کانسنگ‌ها، مطالعات سنگ‌نگاری و حرارت‌سنجی میانبارهای سیال بر روی 5 نمونه حاوی بلورهای کوارتز همزاد با کانه‌زایی سولفیدی و طلا (برداشت شده از رگه‌های کوارتزی) انجام شد. اندازه‌گیری‌‌های حرارت‌سنجی با استفاده از دستگاه میانبار سیال Linkam مدل THMSG600 متصل به میکروسکوپ OLYMPUS مدل BX-51 دارای LD-LensX40 و مجهز به کنترل‌کننده حرارتی TMS94 و سردکننده LNP در دانشگاه پیام نور تبریز انجام شد. دامنه حرارتی دستگاه 190- (توسط نیتروژن مایع) تا 600+ (توسط انرژی الکتریکی) درجه سانتی‌گراد است. کالیبراسیون دستگاه در مرحله گرمایش با دقت 6/0± درجه سانتی‌گراد در دمای 414+ درجه سانتی‌گراد (دمای ذوب نیترات سزیم) و 2/0± درجه سانتی‌گراد در دمای 3/94- درجه سانتی‌گراد (دمای ذوب n-هگزان) انجام شد. میزان شوری میانبارهای سیال بر حسب درصد وزنی معادل نمک طعام (wt% NaCl eq.) با استفاده از دمای ذوب آخرین قطعه یخ (Tmice) و با بهره‌گیری از رابطه (Hall et al, 1988) محاسبه گردید.
زمین­شناسی و کانه­زایی
منطقه مورد مطالعه بخشی از زون متالوژنی قفقاز کوچک- ارسباران می­باشد. ماگماتیسم در این پهنه فلززایی طی کرتاسه پسین شروع شده و تا سنوزوئیک و کواترنری ادامه یافته است. کانه‌زایی در این پهنه اغلب وابسته به سنگ‌های ماگمایی سنوزوئیک است. فعالیت‌های ماگمایی سنوزوئیک در زون ارسباران منجر به تشکیل پلوتون‌های آلکالن تا کالک‌آلکالن همراه با سیستم‌های کانیایی پورفیری، اسکارن و اپی‌ترمال شده است. سنگ‌های برونزد یافته در منطقه نبی جان اغلب شامل واحدهای آتشفشانی و رسوبی کرتاسه هستند که توسط توده‌های نفوذی الیگوسن با ترکیب کوارتزمونزودیوریتی مورد هجوم قرار گرفته‌اند. توده­های نفوذی با ترکیب دیوریتی تا مونزودیوریتی عامل اصلی کانی سازی طلا- نقره اپی ترمال در منطقه نبی جان و پیرامون آن از حوالی روستای پیغام و علویق تا جندشفق و مرزرود می­باشد. پهنه‌های دگرسانی در اطراف رگه­ها و زون­های طلادار در منطقه نبی‌جان شامل انواع سیلیسی، فیلیک و پروپلیتیک هستند که به ابعاد 1 تا 20 متر گسترش یافته­اند. کانه‌زایی در منطقه مورد بررسی به صورت استوک‌ورک و رگه- رگچه‌های کوارتزی در داخل سنگ میزبان کوارتزمونزودیوریتی رخ داده است که شامل کانی‌های سولفیدی (پیریت، کالکوپیریت، گالن و اسفالریت) و طلای طبیعی هستند. پیریت و کالکوپیریت در اثر عملکرد فرآیندهای سوپرژن به هیدرواکسیدهای آهن (گوتیت و لیمونیت) تبدیل شده­اند. بلورهای کوارتز در داخل رگه- رگچه‌های کوارتزی، بافت‌های شانه‌ای و پرکننده فضای خالی را به نمایش می‌گذارند. همچنین شکل بی پیرامیدال در کوارتزهای بلورین این منطقه متداول است. بر اساس مطالعات سیالات درگیر مقادیر دمای همگن شدن و شوری میانبارهای سیال به ترتیب بین ۱۷۰ تا ۲۸۲ درجه سانتی‌گراد و ۲۷/۳ تا ۵۱/۸ درصد وزنی معادل نمک طعام متغیر هستند. بر اساس یافته‌های میانبارهای سیال، فرآیند جوشش مهمترین فرآیند در نهشت کانی‌های سولفیدی و طلا بوده و کمپلکس‌های سولفیدی نقش عمده‌ای در حمل و نقل عناصر کانسنگی ایفا نموده‌اند. بر پایه ویژگی‌های زمین‌شناسی، کانی‌شناسی، ساخت، بافت و مقادیر دمای همگن شدن و شوری میانبارهای سیال، کانه‌زایی سولفیدی- طلای نبی‌جان را می‌توان در زمره ذخایر اپی‌ترمال سولفیداسیون پایین قرار داد.
نتایج و بحث
بر اساس مطالعات انجام شده، واحدهای سنگی رخنمون یافته در منطقه نبی‌جان شامل سنگ‌های آتشفشانی و رسوبی کرتاسه و سنگ‌های نفوذی الیگوسن هستند. سنگ‌های آتشفشانی و رسوبی کرتاسه توسط توده نفوذی کوارتزمونزودیوریتی به سن الیگوسن قطع شده است. کانی‌های اصلی این واحد سنگی را پلاژیوکلاز، پتاسیم فلدسپار و کوارتز و کانی­های فرعی آن را بیوتیت، آمفیبول، کانی­های تیره و بندرت کلینوپیروکسن تشکیل می‌دهند. در مناطق دگرسان شده، اغلب هورنبلندها به بیوتیت و بیوتیت‎ها به کلریت تبدیل شده­اند. فعالیت سیالات گرمابی منتج از توده نفوذی سبب تشکیل انواع دگرسانی‌های سیلیسی، فیلیک و پروپلیتیک در سنگ میزبان شده است. در اثر عبور سیالات گرمابی در امتداد زون‌های خرد شده و گسلی، ضمن دگرسانی سنگ درونگیر کوارتزمونزودیوریتی سبب تشکیل زون­های استوک‌ورکی و رگه - رگچه‌های سیلیسی شده است. رگه و رگچه‌های سیلیسی طلادار حاوی پیریت و مقادیر کمی کالکوپیریت، اسفالریت و گالن هستند. طلای طبیعی به اندازه 2 تا 5 میکرون در بخش‌های دگرسان شده پیریت به هیدرو اکسید آهن(گوتیت) در مقاطع صیقلی مشاهده می‌شود. مطالعات سنگ‌نگاری و حرارت‌سنجی میانبارهای سیال در داخل بلورهای درشت کوارتز صورت گرفت. بلورهای کوارتز در این رگه- رگچه‌ها همرشدی و همزادی با کانی‌های سولفیدی و طلا نشان می‌دهند. میانبارهای سیال دارای اشکال چندوجهی، کشیده، سوزنی، کروی و منفی بلور بوده و از نظر پاراژنتیکی، به صورت میانبارهای اولیه، ثانویه و ثانویه دروغین مشاهده می‌شوند. اندازه میانبارهای سیال از 10 تا 24 میکرون متغیر است. میانبارهای سیال مطالعه شده به 4 نوع قابل تقسیم است: 1) دوفازی مایع- بخار (L+V)، 2) دوفازی بخار– مایع (V+L)، 3) تک‌فازی بخار (V) و 4) تک‌فازی مایع (L). فراوانی میانبارهای دو فازی غنی از مایع بیشتر از بقیه میانبارها است. مطالعات حرارت‌سنجی طی دو مرحله سرمایش و گرمایش بر روی میانبارهای دوفازی غنی از مایع صورت گرفت. دامنه تغییرات دماهای همگن شدن برای میانبارهای سیال دوفازی غنی از مایع بین 170 تا 282 درجه سانتی‌گراد بوده است. بر اساس مقادیر این دماها، شوری میانبارهای سیال دوفازی غنی از مایع در محدوده بین 27/3 تا 51/8 با میانگین 75/5 درصد وزنی معادل نمک طعام قرار می‌گیرد. بر اساس نمودار دو متغیره شوری در مقابل دمای همگن شدن، نقاط مربوط به یافته‌های حرارت‌سنجی میانبارهای سیال در نبی‌جان یک روند افزایش نسبت به شوری به میزان تقریباً سه برابر (از 2/3 % تا 5/8 %) همراه با کاهش قابل ملاحظه نسبت به دما (از 282 درجه سانتی‌گراد به 170 درجه سانتی‌گراد) را نشان می‌دهند که تا حدودی مشابه روند جوشش می‎باشد. همچنین حضور میانبارهای سیال تک فاز مایع می‌تواند حاکی از آن باشد که فعالیت سیالات هیدروترمالی تا دماهای زیر 70 درجه سانتی‌گراد ادامه داشته است. دماهای ذوب یخ از 2- تا 5/5- درجه سانتی‌گراد متغیر است که منطبق بر شوری‌های بین 27/3 تا 51/8 درصد وزنی معادل نمک طعام می‌باشند. روند دمای همگن شدن - شوری با رخداد جوشش فلوئیدهای کانه‌ساز سازگار است. به نظر می‌رسد که نهشت سولفیدها و طلا در طی همین فرآیند جوشش صورت گرفته باشد. با توجه به میانگین دماهای همگن شدن و شوری‌های میانبار‌های سیال و با استفاده از نمودار فشار میانبارهای سیال (در هنگام همگنی) در مقابل دمای همگن شدن حداقل فشار سیال در هنگام نهشت کانی‌های باطله و کانسنگی در حدود 25 بار بوده است. با توجه به رخداد جوشش سیال، این فشار را باید از نوع هیدرواستاتیک در نظر گرفت که معادل عمقی حدود 250 متر است. این عمق را می‌توان به عنوان کمترین عمق کانه‌زایی سولفیدی و طلا در منطقه نبی‌جان در نظر گرفت. بر اساس نمودار دما – شوری (Wilkinson, 2001) کانه‌زایی سولفیدی - طلا در منطقه نبی‌جان در محدوده اپی‌ترمال قرار می‌گیرد.
نتیجه‌گیری
کانی‌سازی در منطقه نبی‌جان به‌ صورت استوک‌ورک و رگه - رگچه‌های کوارتزی در داخل سنگ درونگیر کوارتزمونزودیوریتی رخ داده است. عامل کانی­سازی طلای اپی ترمال به احتمال زیاد توده نفوذی مدفون می­باشد که فقط رگه و رگچه­های سیلیسی نشات گرفته از آن توانسته توده کوارتزمونزودیوریتی را قطع نماید. دگرسانی‌های سیلیسی، فیلیک و پروپلیتیک در اطراف رگه- رگچه‌های کوارتزی توسعه یافته‌اند. رگه- رگچه‌های کوارتز حاوی کانه‌زایی سولفیدی (پیریت، کالکوپیریت، گالن و اسفالریت) و طلای طبیعی بوده و بلورهای کوارتز در داخل این رگه - رگچه‌ها، بافت‌های شانه‌ای و پرکننده فضای خالی را نشان می‌دهند. دمای همگن شدن میانبارهای سیال دو فازی موجود در کوارتزهای همراه با کانه‌زایی در محدوده 170 تا 282 با بیشترین فراوانی بین 170 تا 210 درجه سانتی‌گراد قرار می‌گیرد. ویژگی‌های زمین‌شناسی، ساخت و بافت زون‌های کانه‌زایی و دگرسانی به‌ همراه یافته‌های میکروترمومتریک در منطقه نبی جان با کانی­سازی طلای اپی ترمال دما پایین مطابقت دارد.  

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigations of sulfide-gold mineralization and fluid inclusions in the Nabijan area, southwest of Kaleibar, East-Azarbaidjan province

نویسندگان [English]

  • Fatemeh Arbati Gonbari 1
  • Ghahraman sohrabi 2
  • Seyed Ghafoor Alavi 1
  • Ali Asghar Calagari 1
1 Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
2 Department of geology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Introduction
The Nabijan region is located 20 km southwest of Kalybar in East Azerbaijan Province and in northwest Iran. According to the divisions of Iranian structural zones (Aghanabati, 2004), this region is considered a part of the western part of the Alborz-Azerbaijan magmatic belt and is metallogenically located in the Ahar-Arasbaran metallogenic zone (Castro et al, 2013). The Ahar-Arasbaran metallogenic zone is one of the most important and richest metallogenic zones, especially for gold, copper and molybdenum, in the northwest and Iran (Jamali et al, 2012). So far, numerous geological studies have been carried out by various researchers on geochemistry, mineralogy and alteration in the Arasbaran zone and around the Nabijan region. Based on exploration studies conducted by Shekouei (2003), a promising area for gold and copper elements has been introduced in Nabi Jan. Based on the aforementioned studies (trenching and boring) by the Geological and Mineral Exploration Organization of the country, about 300 thousand tons of gold ore have been estimated in silica zones and veins with an average grade of 1.37 grams per ton. Previous researchers have conducted studies on geology, geochemistry, mineralization and alteration in the Nabi Jan region. In this paper, an attempt has been made to describe the geological, mineralization and alteration characteristics of the Nabi Jan region, and to conduct new studies for the first time based on fluid intermediates in quartz-sulfide veins - veinlets in order to determine the physicochemical conditions of mineralizing fluids and the genesis of the deposit.
 
Materials and Methods
This research consists of two parts: field and laboratory investigations. In field studies, mineralized veins were identified and their relationship with host rocks and alteration zones was investigated, and samples were taken for laboratory studies. In this regard, 60 samples were collected from host rock units and mineralizing outcrops. During laboratory studies, 20 thin sections and 5 polished sections were prepared and subjected to petrographic and mineralographic studies at the University of Tabriz. In order to understand the physicochemical nature of the mineralizing fluid and to investigate the process of chemical and temperature changes of mineralizing fluids during ore deposition, petrographic and thermometric studies of fluid intercalations were carried out on 5 samples containing quartz crystals cognate with sulfide mineralization and gold (taken from quartz veins). Thermometric measurements were performed using a Linkam THMSG600 fluid interface device connected to an OLYMPUS BX-51 microscope with LD-LensX40 and equipped with a TMS94 thermal controller and LNP cooler at Payam Noor University of Tabriz.
The temperature range of the device is -190 (by liquid nitrogen) to +600 (by electrical energy) °C. Calibration of the device during the heating stage was performed with an accuracy of ±0.6 °C at +414 °C (melting temperature of cesium nitrate) and ±0.2 °C at -94.3 °C (melting temperature of n-hexane). The salinity of the fluid interfaces was calculated in terms of weight percent equivalent to common salt (wt% NaCl eq.) using the melting temperature of the last ice piece (Tmice) and using the equation (Hall et al, 1988).
Geology and Mineralization
The study area is part of the Lesser Caucasus-Arasbaran metallogenic zone. Magmatism in this metallogenic zone began during the Late Cretaceous and continued into the Cenozoic and Quaternary. Mineralization in this zone is mostly related to Cenozoic magmatic rocks. Cenozoic magmatic activities in the Arasbaran zone have led to the formation of alkaline to calc-alkaline plutons with porphyry, skarn, and epithermal mineral systems. The exposed rocks in the Nabi Jan area mostly consist of Cretaceous volcanic and sedimentary units that have been intruded by Oligocene intrusive masses with quartz-monzodiorite composition. Intrusive masses with dioritic to monzodiorite composition are the main factor of epithermal gold-silver mineralization in the Nabi Jan area and its surroundings from around the villages of Paigham and Alawiq to Jundshafq and Marzrud. Alteration zones around gold veins and zones in the Nabijan region include silicic, phyllic, and propolite types that extend to dimensions of 1 to 20 meters. Mineralization in the studied area has occurred in the form of stockwork and quartz veinlets-veins within the quartz monzodiorite host rock, which include sulfide minerals (pyrite, chalcopyrite, galena, and sphalerite) and native gold. Pyrite and chalcopyrite have been transformed into iron hydroxides (goethite and limonite) as a result of supergene processes. Quartz crystals within the quartz veinlets-veins exhibit comb and void-filling textures. Also, bipyramidal shape is common in crystalline quartz in this region. Based on the studies of the fluids involved, the homogenization temperature and salinity values of the fluid interlayers vary between 170 and 282 °C and 3.27 to 8.51% by weight of table salt, respectively. Based on the findings of the fluid interlayers, the boiling process is the most important process in the deposition of sulfide minerals and gold, and sulfide complexes have played a major role in the transport of ore elements. Based on the geological characteristics, mineralogical, structure, texture, and homogenization temperature and salinity values of the fluid interlayers, the Nabijan sulfide-gold mineralization can be classified as a low-sulfidation epithermal deposit.
 
Results and Discussion
Based on the studies conducted, the rock units exposed in the Nabijan region include Cretaceous volcanic and sedimentary rocks and Oligocene intrusive rocks. The Cretaceous volcanic and sedimentary rocks are cut by the Oligocene quartz-monzodiorite intrusion. The main minerals of this rock unit are plagioclase, potassium feldspar, and quartz, and its accessory minerals are biotite, amphibole, dark minerals, and rarely clinopyroxene. In the altered areas, most hornblens have been transformed into biotite and biotites into chlorite. The activity of hydrothermal fluids resulting from the intrusion has caused the formation of various siliceous, phyllic, and propolite alterations in the host rock. As a result of the passage of hydrothermal fluids along the fractured and faulted zones, while altering the quartz-monzodiorite host rock, it has caused the formation of stony zones and silica veins-veins. Gold-bearing silica veins and veins contain pyrite and small amounts of chalcopyrite, sphalerite and galena. Natural gold of 2 to 5 microns is observed in the altered parts of pyrite to iron hydroxide (goethite) in polished sections. Petrographic and thermometric studies of fluid intercalations were carried out inside coarse quartz crystals. Quartz crystals in these vein-veins show co-growth and twinning with sulfide minerals and gold. Fluid intercalations have polyhedral, elongated, acicular, spherical and negative crystal shapes and are observed as primary, secondary and pseudo-secondary intercalations from a paragenetic point of view. The size of the fluid interlayers varies from 10 to 24 microns. The studied fluid interlayers can be divided into 4 types: (1) two-phase liquid-vapor (L+V), (2) two-phase vapor-liquid (V+L), (3) single-phase vapor (V), and (4) single-phase liquid (L). The frequency of two-phase liquid-rich interlayers is higher than the other interlayers. Thermometric studies were carried out on two-phase liquid-rich interlayers during two cooling and heating stages. The range of homogenization temperatures for two-phase liquid-rich interlayers was between 170 and 282 °C. Based on the values of these temperatures, the salinity of the two-phase liquid-rich interlayers ranges from 3.27 to 8.51 with an average of 75.5% by weight equivalent to table salt. Based on the bivariate plot of salinity versus homogenization temperature, the points corresponding to the thermometry findings of the fluid intercalations at Nabijan show a trend of approximately threefold increase in salinity (from 3.2% to 8.5%) accompanied by a significant decrease in temperature (from 282°C to 170°C), which is somewhat similar to the boiling trend. Also, the presence of single-phase liquid intercalations could indicate that the activity of hydrothermal fluids continued down to temperatures below 70°C. The ice melting temperatures range from -2 to -5.5°C, which 
correspond to salinities between 3.27 and 8.51% by weight of table salt. The homogenization temperature-salinity trend is consistent with the boiling of ore-forming fluids. It seems that the deposition of sulfides and gold occurred during the same boiling process. Considering the average homogenization temperatures and salinities of the fluid interlayers and using the diagram of fluid interlayer pressure (during homogenization) versus homogenization temperature, the minimum fluid pressure during the deposition of waste and ore minerals was about 25 bar. Considering the occurrence of fluid boiling, this pressure should be considered hydrostatic, which is equivalent to a depth of about 250 meters. This depth can be considered as the lowest depth of sulfide and gold mineralization in the Nabijan area. According to the temperature-salinity diagram (Wilkinson, 2001), sulfide-gold mineralization in the Nabijan area is in the epithermal range.
 
Conclusion
Mineralization in the Nabijan area occurred in the form of stockwork and quartz veinlets within the quartz monzodiorite host rock. The epithermal gold mineralization agent is most likely a buried intrusive mass from which only the silica veins and veinlets originating from it were able to cut the quartz monzodiorite mass. Silicic, phyllic and propolite alterations have developed around the quartz veinlets. The quartz veinlets contain sulfide mineralization (pyrite, chalcopyrite, galena and sphalerite) and native gold, and the quartz crystals within these veinlets show comb and void-filling textures. The homogenization temperature of the two-phase fluid interlayers present in the mineralized quartz is in the range of 170 to 282 with the highest frequency between 170 and 210 °C. The geological characteristics, structure, and texture of mineralization and alteration zones, along with microthermometric findings in the Nabi Jan area, are consistent with low-temperature epithermal gold mineralization.

کلیدواژه‌ها [English]

  • Sulfide-gold mineralization
  • Fluid inclusions
  • Epithermal
  • Nabijan
  • East-Azarbaidjan
Adeli, Z., Rasa, I. and Darvishzadeh, A., 2014. Fluid inclusion study of the ore-quartz veins at Haftcheshmeh porphyry copper (Mo) deposit, Ahar-Arasbaran Magmatic Belt, NW Iran. Ore Geology Reviews, v. 65(2), p. 502-511.
Aghanabati, S.A., 2004. Geology of Iran, 586 p (In Persian).
Aghazadeh, M., Castro, A., Badrzadeh, Z. and Vogt, K., 2011. Post-collisional polycyclic plutonism from the Zagros hinterland: The Shaivar Dagh plutonic complex, Alborz belt, Iran. Geological Magazine Cambridge University Press, p. 1-29.
Asgharzadeh Asl, H., Mehrabi, B. and Tale Fazel, A., 2017. Mineralogy study, mineralization occurrence and temperature-pressure conditions of Aq Daraq polymetallic deposit, Ahar-Arasbaran metallogenic region. Journal of Economic Geology, v. 9(1), p. 1-23 (In Persian).
Asia Sofiani, F., Mokhtari, M.A.A., Kohestani, H. and Azimzadeh, A.M., 2018. Geology, geochemistry and fluid intercalation studies in the copper-molybdenum-gold quartz veins of Qarachilar, northeast of Kharvana, East Azerbaijan. Journal of Economic Geology, v. 10(1), p. 139-171 (In Persian)
Atalou, S., Nazafati, N., Lotfi, M. and Mehraj Aghazadeh, M., 2017. Fluid Inclusion Investigations of the Masjed Daghi Copper-Gold Porphyry-Epithermal Mineralization, East Azerbaijan Province, NW Iran. Open Journal of Geology v. 7(08), p. 1110-1127.
Bani Adam, F., 2005. Geological study and possible origin of copper and gold mineralization in the Nabi Jan exploration area, Kalibar. Master's thesis, Earth Sciences Research Institute, Geological Survay of Iran, 148 p (In Persian).
Bodnar, R.J. and Vityk, M.O., 1994. Interpretation of microthermometric data for H2O-NaCl fluid inclusions. Short Course of the Working Group, Siena, p. 117-130.
Borisenko, A.S., 1977. Study of the salt composition of solutions in gas-liquid inclusions in minerals by the cryometric method, Soviet Geol. Geophys, v. 18, p. 11-19.
Calagari, A.A., 2004. Fluid inclusion studies in quartz veinlets in the porphyry copper deposit at Sungun, East-Azarbaidjan, Iran, Journal of Asian Earth Sciences, v. 23(2), p. 179-189.
Castro, A., Aghazadeh, M., Badrzadeh, Z. and Chichorro, M., 2013. Late Eocene-Oligocene post-collisional monzonitic intrusions from the Alborz magmatic belt, NW Iran, An example of monzonite magma generation from a metasomatized mantle source, Lithos, v. 180-181, p. 109-127.
Dilek, Y., Imamverdiyev, N. and Altunkaynak, S., 2010. Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: Collision-induced mantle dynamics and its magmatic fingerprint. International Geology Review, v. 52, p. 536-578.
Dong, G., Morrison, G. and Jaireth S., 1995. Quartz textures in epithermal veins, Queensland-Classification, origin, and implication. Economic Geology, v. 90(6), p. 1841-1856.
Ebrahimi, S., Alirezaei, S. and Pan, Y., 2011. Geological setting, alteration, and fluid inclusion characteristics of Zaglic and Safikhanloo epithermal gold prospects, NW Iran. Geological Society, London, Special Publications, v. 350(1), p. 133-147.
Ebrahimi, S., Ming Pen, Y., Alirezaei, S. and Mehrparto, M., 2009. Mineralogical studies and fluid intercalations of the Sharafabad epithermal gold deposit, northwestern Iran. Quarterly Journal of Earth Sciences, v. 18(71), p. 149-154 (In Persian).
Ferdowsi, R., Kalagari, A.A., Hosseinzadeh, M.R. and Siahcheshm, K., 2015. Petrography, geochemistry and chemistry of minerals of the Estreqan porphyry stock, Kharvana, East Azerbaijan. Iranian Journal of Crystallography and Mineralogy, v. 23(4), p. 774-759 (In Persian).
Ghamidzadeh, H., 2002. Economic geology and gold exploration in the Safikhanlu-Naghduz exploration area (southeast of Ahar). Master's thesis, Earth Sciences Research Institute, Geological Survay of Iran. 232 p (In Persian).
Haas, J.L., 1976. Physical properties of the co-existing phases and thermochemical properties of the H2O component in boiling NaCl solutions: Preliminary steam tables for NaCl solutions. United States Geological Survey Bulletin, 1421 p.
Hall, D.L., Sterner, S.M. and Bodnar, R.J., 1988. Freezing point depression of NaCl–KCl–H2O solutions. Economic Geology, v. 83(1), p. 197-202.
Hezarkhani, A. and Williams-Jones, A.E., 1998. Controls of alteration and mineralization in the Sungun porphyry copper deposit, Iran; evidence from fluid inclusions and stable isotopes. Economic Geology, v. 93(5), p. 651-670.
Jabarzadeh, Z., Hosseinzadeh, M.R., Moayed, M. and Faramarzi, R., 2015. Mineralogy and geochemistry of hydrothermal alteration in the Yaraloja event (northwest Ahar-East Azerbaijan). Iranian Journal of Crystallography and Mineralogy, v. 23(1), p. 75-86 (In Persian).
Jamali, H. and Mehrabi, B., 2015. Relationships between arc maturity and Cu–Mo–Au porphyry and related epithermal mineralization at the Cenozoic Arasbaran magmatic belt. Ore Geology Reviews, v. 65(2), p. 487-501.
Jamali, H., Dilek, Y., Daliran, F., Yaghubpur, A. and Mehrabi, B., 2010. Metallogeny and tectonic evolution of the Cenozoic Ahar–Arasbaran volcanic belt, northern Iran. International Geology Review, v. 52(4-6), p. 608-630.
Jamali, H., Mahmoudabadipour, T. and Shokohi, H., 2017. Geochemical halos of gold and associated elements in the Nabijan gold deposit (West Kalibar groove, northwestern Iran). Petrology Journal, v. 8(30), p. 139-156 (In Persian).
Jamali, H., Yaghubpur, A., Mehrabid, B., Dilek, Y., Daliran, F. and Meshkani, S.A., 2012. Petrogenesis and tectono-magmatic setting of Meso-Cenozoic magmatism in Azerbaijan province, Northwestern Iran. Petrology-New Perspectives and Applications INTECH, Croatia, p. 39-56.
Keevil, N.B., 1942. Vapor pressures of aqueous solutions at high temperatures. Journal of the American Chemical Society, v. 64(4), p. 841-850.
Kheirkhah, M., Allen, M.B. and Emami, M., 2009. Quaternary syn-collision magmatism from the Iran/Turkey borderlands, Journal of Volcanology and Geothermal Research, v. 182(1-2), p. 1-12.
Maghsoudi, A., Yazdi, M., Mehrpartou, M., Vosoughi, M. and Younesi, S., 2014. Porphyry Cu–Au mineralization in the Mirkuh Ali Mirza magmatic complex, NW Iran, Journal of Asian Earth Sciences, v. 79(2), p. 932-941.
Mehrparto, M. and Emami, M.H., 2002. Geological map of Varzeghan, scale 1:100,000, Geological Survay of Iran (In Persian).
Mehrparto, M. and Nazer, N.Kh., 2008. Geological map of Kalibar, scale 1:100,000, Geological Survay of Iran (In Persian).
Nabatian, G., Ghaderi, M., Corfu, F., Neubauer, F., Bernroider, M., Prokofiev, V. and Honarmand, M., 2014. Geology, alteration, age, and origin of iron oxide–apatite deposits in Upper Eocene quartz monzonite, Zanjan district, NW Iran, Mineralium Deposita, v. 49(2), p. 17-234.
Pirajno, F., 2009. Hydrothermal processes and mineral systems. Springer Science, New York, 1273 p.
Richards, J.P. and Sholeh, A., 2016. The Tethyan Tectonic History and Cu-Au Metallogeny of Iran. Economic Geologists. Inc. Special Publication, v. 19, p. 193-212.
Robert, F., Brommecker, R., Bourne, B.T., Dobak, P.J., McEwan, C.J., Rowe, R.R. and Zhou, X., 2007. Models and exploration methods for major gold deposit types, Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, v. 7, p. 691-711.
Roedder, E., 1984. Fluid inclusions, Reviews in mineralogy, v.12.
Roedder, E. and Bodnar, R.J., 1980. Geologic pressure determination from fluid inclusion studies, Annual Review of Earth and Planetary Sciences, v. 8(1), p. 263-301.
Shekouei, H., 2003. Gold exploration in the northern Nabijan area. Geological Survay of Iran, 380 p (In Persian).
Shepherd, T.J., Rankin, A.H. and Alderton, D.H., 1985. A practical guide to fluid inclusion studies, Blackie, Glasgow, 239 p.
Sholeh, A., Rastad, E., Huston, D., Gemmell, J.B. and Taylor, R.D., 2016. The Chahnaly low-sulfidation epithermal gold deposit, western Makran volcanic arc, Southeast Iran. Economic Geology, v. 111(3), p. 619-639.
Simmonds, V. and Moazzen, M., 2015. Re–Os dating of molybdenites from Oligocene Cu–Mo–Au mineralized veins in the Qarachilar area, Qaradagh batholith (northwest Iran): implications for understanding Cenozoic mineralization in South Armenia, Nakhchivan, and Iran. International Geology Review, v. 57(3), p. 290-304.
Simmons, S.F., White, N.C. and John, D.A., 2005. Geological characteristics of epithermal precious and base metal deposit. In: J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb and J.P. Richards (Editors), Economic Geology One Hundredth Anniversary Volume, Society of Economic Geologists, Littleton, CO, U.S.A, p. 485-522.
Sohrabi, Q., Hosseinzadeh, M.R., Kalagari, A.A. and Haj Alilu, B., 2015. Study of molybdenum mineralization in the Qaradagh (Ordubad)-Shivardagh belt with emphasis on petrology, geochemistry and alteration of host intrusive masses (northwestern Iran). Quarterly Journal of Earth Sciences, v. 24(94), p. 243-258 (In Persian).
Solat, A., Nazafati, N., Lotfi, M. and Aghazadeh, M., 2017. Fluid inclusion investigations of the Masjed Daghi copper-gold porphyry-epithermal mineralization, East Azerbaijan Province, NW Iran. Open Journal of Geology, v. 7(8), p. 1110-1127. 
Sourirajan, S. and Kennedy, G.C., 1962. The system H2O–NaCl at elevated temperatures and pressures, American Journal of Science, v. 260(2), p. 115-141.
Urusova, M.A., 1975. Volume properties of aqueous solutions of sodium chloride at elevated temperatures and pressures, Russian Journal of Inorganic Chemistry, v. 20, p. 1717-1721.
Vaziri-Hashi, F., Lotfi, M. and Emami, M.H., 2009. Mineralization characteristics and types of associated alterations in the Nabijan mineral phenomenon (Eastern Azerbaijan-Northwest Iran). Petrology Journal, v. 1(1), p. 27-48 (In Persian)
White, N.C. and Hedenquist, J.W., 1995. Epithermal gold deposits: Styles, characteristics and exploration, Society of Economic Geologists Newsletter, v. 23(1), p. 9-13.
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits, Lithos, v. 55(1), p. 229-272.
Yasami, N., Ghaderi, M., Madanipour, S. and Taghilou, B., 2017. Structural control on overprinting high-sulfidation epithermal on porphyry mineralization in the Chodarchay deposit, northwestern Iran, Ore Geology Reviews, v. 86, p. 212-224