محاسبه اکتیویته سیالات در میگماتیت های همدان با استفاده از کانی کردیریت

نوع مقاله : علمی -پژوهشی

نویسندگان

1 دانشیار، گروه زمین‌شناسی دانشگاه شهید چمران، اهواز

2 دانشیار، گروه سنجش از دور دانشگاه شهید چمران، اهواز

چکیده

نفوذ کمپلکس الوند (نفوذی­ها در طی ژوراسیک شکل گرفته­اند) در سنگ­های رسی دگرگون شده میزبان (شیستها) سبب ایجاد هورنفلس­های رسی و میگماتیت­های آناتکسی در هاله دگرگونی توده شده است. مهمترین واکنش­های توسعه مذاب در سنگ­های رسی دگرگون شده موجود در هاله الوند عبارتند از:‏بیوتیت + سیلیمانیت / آندالوزیت = فلدسپارپتاسیم + اسپینل+کردیریت + مذاب و‏ بیوتیت + سیلیمانیت/ آندالوزیت + پلاژیوکلاز+ کوارتز= فلدسپارپتاسیم+گارنت + مذاب که عمدتا مرتبط با فرآیند ذوب بدون سیال می­باشد. با استفاده از تعادل ترمودینامیکی کانی­ها و واکنش­های تعادلی چندگانه، فشار و دمای اوج دگرگونی مجاورتی در سنگ­های میگماتیتی به ترتیب 5-4 کیلوبار و750 درجه سانتیگراد، تخمین زده شده است. ایزوپلیتهای (خطوط هم­تراز) اشباعی و سطح اشباعی برای سیالات CO2 و H2O در کردیریت بطور قوی وابسته به فشار است. در مقابل، آزاد سازیH2O بوسیله کانی کردیریت متعادل با مذابی که در طی واکنش­های ذوب آبزدایی بیوتیت بوجود می­آید بوسیله توزیع H2O بین مذاب گرانیتی و کردیریت یاDW  که معادله آن عبارت است از  [DW=wt%H2O(melt)/ wt%H2O (Crd)] کنترل می­شود که عمدتاٌ وابسته به حرارت است. فعالیت (اکتیویته) کل سیالات در کردیریت موجود در مزوسوم میگماتیت­هاaH2O (0.62) + aCO2(0.15)  کمتر از 77/0 در این دما-فشار تعین شده است. درصد آب موجود در مذاب و کردیریت­ها به ترتیب 7/3 و 1/1 درصد وزنی تخمین زده شده است که بر این اساس DW در این سنگ­ها 36/3 محاسبه شده است. این مقدار DW سبب کاهش 15-30 درصدی مذابی می­شود که از سنگ­های رسی بوجود می­آید.

کلیدواژه‌ها


عنوان مقاله [English]

Calculation of fluid activity within Hamadan migmatite using cordierite minerals

چکیده [English]

Intrusion of the Alvand complex (intrusions formed during Jurassic) in to the host metapelitic rocks (schistes) created pelitic hornfelses and anatectic migmatitesReactions Sil/And +‏ Bt = Crd +‏ Spl+‏ Kfs + melt and Bt+Als+Pl+Qtz = Grt+Kfs+melt, are the most reactions for the development of melt in the metapelitic rocks of Alvand aureole, and is commonly attributed to the process of fluid-absent partial melting. Using multiple equilibria, temperature (~750 ºC) and pressure (~4-5 kbar), have been calculated for the formation of the anatectic migmatites rocks. The volatile saturation surfaces and saturation isopleths for both H2O and CO2 in cordierite are strongly pressure dependent. In contrast, the uptake of H2O by cordierite in equilibrium with melts formed through biotite dehydration melting, controlled by the distribution of H2O between granitic melt and cordierite, DW[DW=wtH2O(melt)/ wtH2O (Crd), is mainly temperature dependent. The cordierite from a mesosome from this region yields a calculated total aH2O (0.62) + aCO2 (0.15) of < 0.77 at these P-T conditions. Melt H2O contents (3.7 wt percentage) and cordierite H2O contents (1.1 wt percentage) yields DW=3.36, compatible with model dehydration melting reactions. This range in DW cause a 15-30 relative decrease in the total wt of melt produced from pelites

کلیدواژه‌ها [English]

  • Cordierite- fluid activity-Migmatite rocks- Alvand aureole
-بهاری فر، ع.، 1376. نگرشی نو بر پتروژنز سنگ-های دگرگونی ناحیه‌ای همدان پایان نامه کارشناسی‌ارشد زمین‌شناسی دانشگاه تربیت معلم تهران، 220 ص.
-صادقیان، م.، ١٣٧٣. بررسی پترولوژی سنگ‌های آذرین و دگرگونی منطقه چشمه قصابان همدان. پایان‌نامه کارشناسی‌ارشد، دانشگاه تهران.
-Baharifar, A., Moinevaziri, H., Bellon, H. and Pique, A., 2004. The crystalline complexes of Hamadan (Sanandaj-Sirjan zone, western Iran): metasedimentary Mesozoic sequences affected by Late Cretaceous tectono-metamorphic and plutonic events, II. 40K-40Ar dating, Comptes Rendus Geoscience.
-Carrington, D. P. and Harley, S. L., 1995. Partial melting and phase relations in high-grade metapelites: an experimental petrogenetic grid in the KFMASH system, Contributions to Mineralogy and Petrology, v. 120, p. 270-291.
-Harley, S. L., Thompson, P., Hensen, B. J. and Buick, I. S. 2002. Cordierite as a sensor of fluid conditions in high-grade metamorphism and crustal anatexis, Journal of Metamorphic Geology, v. 20, p. 71-86.
-Harley, S. L. and Carrington, D. P., 2001. The distribution of H2O between cordierite and granitic melt: Improved calibration of H2O incorporation in cordierite and its application to high-grade metamorphism and crustal anatexis, Journal of Petrology, v.42, p. 1595-1620.
-Holland, T. J. B. and Powell, R., 1998. An internally consistent thermodynamic data set for phases of petrological interest, Journal of Metamorphic Geology, v. 16, p. 309–344.
-Johannes, W. and Holtz, F., 1996. Petrogenesis and Experimental Petrology of Granitic Rocks, Springer Verlag, Berlin, 318 p.
-Kretz, R., 1983. Symbols for rock-forming minerals, American Mineralogy, v. 68, p. 277-279.
-Kurepin, V. A., 1984. H2O and CO2 contents of cordierite as an indicator of thermodynamical conditions of formation, Geokhimiya, v. 8, p. 1125-1134.
-Moazzen, M., Droop, G. T. R. and Harte, B., 2001. Abrupt transition in H2O activity in the melt-present zone of a thermal aureole: evidence from H2O contents of cordierites, Geology, v. 29, p. 311-314.
-Newton, R. C., Smith, J. V. and Windley, B. F., 1980. Carbonic metamorphism, granulites, and crustal growth, Nature, v. 288, p. 45-49.
-Rigby, M. J., Droop, G. T. R. and Bromiley, G. D., 2008. Variations in fluid activity across the etive thermal aureole, Scotland: evidence from cordierite volatile contents, Journal of Metamorphic Geology, v. 26, p. 331-346.
-Robinson, P. R., Hollocher, K.T., Tracy, R.J. and Dietsch, C.W., 1982. High grade Acadian regional metamorphism in south-central Massachusetts, In: NEIGC 74th Annual Meeting of the state Geological and Natural History Survey of Connecticut, guidebook for fieldtrips in Connecticut and South-Central Massachusetts (eds Joester, R.A & Quarrier, S.S. ), p. 289-340, The Univercity of Connecticut, Storrs.
-Saki, A., 2011. Formation of Spinel-cordierite-plagioclase symplectites replacing andalusite in metapelitic of the Alvand aureole, Iran, Geological Magazine, v. 148(3), p. 423-434
-Saki, A., Moazzen, M. and Baharifar, A., 2012. Migmatites microstructures and partial melting of the Hamadan pelites within the Alvand aureole, West Iran, International Geology Review, v. 54(11), p. 1229-1240.
-Sepahi, A.A., Whitney, D.L. and Baharifar, A.A., 2004. Petrogenesis of andalusite–kyanite– sillimanite veins and host rocks, Sanandaj-Sirjan metamorphic belt, Hamadan, Iran, Journal of Metamorphic Geology, v. 22, p. 119-134.
-Sepahi, A.A., 1999. Petrology of the Alvand plutonic complex with special reference on granitoids, PhD Thesis (in Farsi), Tarbiat Moallem University of Tehran, Iran.
-Sepahi, A. A., Borzoei, K. and Salami, S., 2013. Mineral chemistry and thermobarometry of plutonic, metamorphic and anatectic rocks from the Tueyserkan area (Hamedan, Iran), Geological Quarterly, v. 57(3), p. 515-526.
-Schreyer, W., 1985. Experimental studies on cation substitutions and fluid incorporation in cordierite, Bulletin de Mineralogie, v.108, p. 273-291.
-Stevens, G. and Clemens, J. D., 1993. Fluid-absent melting and the roles of fluids in the lithosphere: a slanted summary? Chemical Geology, v. 108, p.1-17.
-Stevens, G., Clemens, J. D. and Droop, G. T. R., 1995. Hydrous cordierite in granulites and crustal magma production, Geology, v. 23, p. 925-928.
-Stocklin, J. and Setudinia, A., 1972. Lexique Stratigraphique International Volume III ASIE, Centre National de la Recherche Scientifique, 15, quai Anatole-France, 75 p (Paris-VII).
-Thompson, P., Harley, S. L. and Carrington, D. P., 2001. H2O-CO2 partitioning between fluid, cordierite and granitic melt at 5 kbar and 900 C. Contributions to Mineralogy and Petrology, v. 150, p. 170-190.
-Vielzeuf, D. and Montel, J.M., 1994. Partial melting of metagreywackes; Part 1, fluid-absent experiments and phase relationships, Contribution to Mineralogy and Petrology, v. 117, p. 375-393.
-Vry, J. K., Brown, P. E. and Valley, J. W., 1990. Cordierite volatile content and the role of CO2 in high-grade metamorphism, American Mineralogist, v. 75, p. 71-88.
-Waters, D. J., 1988. Partial melting and the formation of granulite facies assemblages in Namaqualand, South Africa, Journal of Metamorphic Geology, v. 6, p. 387-404.