تحلیل و مقایسه استراتژی‌های کاربری احداث سدهای کوتاه در داخل حوضه آبریز و احداث سد بلند در انتهای حوضه آبریز با استفاده از نظریه بازی‌ها

نوع مقاله : علمی -پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه بجنورد، بجنورد، ایران

2 گروه پژوهشی اکولوژی انسانی شهری کارگشا، تهران، ایران

10.29252/esrj.12.1.170

چکیده

بکارگیری صحیح فناوری­های پیشرفته و علوم کلاسیک همچون نظریه بازی­ها در قالب ارائه راهکارهای جدید در جهت بهره‌برداری بهینه منابع آب از اهمیت ویژه­ای برخوردار است. پیامدهای زیست­محیطی، اجتماعی و اقتصادی احداث سدها از یکدیگر قابل تفکیک هستند. در پژوهش حاضر، ضمن ارائه مدل و روشی نوین در بهینه‌سازی مکان­یابی سدها، به تبیین استراتژی تقسیم سد بلند به سدهای کوتاه در چند استراتژی جداگانه با مکانیابی‌های مختلف اولیه، بر روی شبکه رودخانه‌ها در داخل حوضه آبریز پرداخته شد. به طوری­که با محاسبه پارامترهای زیست­محیطی، اجتماعی و اقتصادی برای هر استراتژی، درصدد دسترسی به استراتژی بهینه بوده است. همچنین در مدل مذکور، محیط‌زیست، اقتصاد و اجتماع به عنوان بازیکن در نظر گرفته شدند. در ادامه، محاسبه پیامدهای مختلف برای هریک از بازیکن­های محیط‌زیست (میزان مراتع و جنگل‌های مستغرق در هر استراتژی)، اجتماع (تعداد روستاها و اماکن متبرکه مستغرق در مخازن سدهای هر استراتژی) و اقتصاد (میزان بتن مصرفی بدنه‌ سدهای هر استراتژی) انجام پذیرفت. سپس، نمره پیامد هر یک از بازیکنان به صورت نمره بالا برای کمترین خسارت به هر استراتژی داده شد. در نتیجه، پیامدهای مذکور به صورت فرم ماتریسی نمایش داده شدند و در نهایت، استراتژی به عنوانS2  تعادل نش (NASH) و استراتژی بهینه-جواب مسئله (مساحت جنگل­ها و مراتع زیرآب رفته 133372 متر مربع، با حجم بتن­ریزی 330150 مترمکعب، و همچنین 3 مکان متبرکه مستغرق) مشخص گردید. برای توسعه همزمان تمامی شاخص‌های محیط‌زیستی و اقتصادی و اجتماعی برای طراحی یک سد نباید انفرادی صورت گیرد که باید برای تمام زیرحوزه و سناریوهای جایگزین ممکن نیز مورد بررسی قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis and comparison of strategies the construction of short dams inside a catchment, and the construction of a long dam at the end of a catchment by application of game theory

نویسندگان [English]

  • Sadegh Partani 1
  • Majid Ebrahimi 2
  • Farshid Bostanmaneshrad 2
1 Civil Engineering Department, Faculty of Engineering, University of Bojnord, Bojnord, Iran
2 Kargosha research group of Urban Human Ecology, Tehran, Iran
چکیده [English]

Extended abstract
Introduction
Today, the calculation of sub-basin water balance is the most widely used application of game theory (Andik & Niksokhan 2020; Zarei et al., 2019). This study examines the hypothetical efficiency of game theory in determining the number of dams and distribution reservoirs. Simultaneous consideration of environmental, technical-economic and social criteria in formulating three different strategies is one of the innovations of the method for testing this hypothesis.
Materials and methods
According to the topographic conditions and river network conditions, TAHAM area - 5763IV IRAN - located in Zanjan province was selected. Then, different basins were identified in the selected area and the largest basin was selected in terms of area and completeness of the waterway network. The number of strategies in this study is based on the hydrological classification of rivers. Therefore, the strategies were explained according to the classification of rivers within the main basin. This was done by dividing the basins based on categories two, three, four and five. However, due to the fact that the area of ​​first class river basins was very small, the division of basins into first class basins was not included. The following strategies are obtained based on the classification of rivers: (a) -Strategy S1: main basin with main river category five; (B) -Strategy S2: Divide the main basin into two sub-basins S2-1 with classification of river category three and sub-basin S2-2 with class four; (C) -Strategy S3: Division of S2 strategy basins into three sub-basins with three classifications, named S3-1, S3-2 and S3-3 and (d) -Strategy S4: Division of S3 strategy basins To sub-basins with two river categories, named S4-1, S4-2, S4-3, S4-4, S4-5, S4-6, S4-7 and S4-8.
Results and Discussion
After explaining and parameterizing the game rule, the outcome matrix of each game was obtained. Finally, according to the outcome matrix study, S2 strategy was identified as the Nash equilibrium or the answer to the problem. In this form, numbers are in tension and competition with each other. Simultaneously examining the criteria and consequences of adopting any strategy for each player practically creates interactions of effects and conflict of interest for the economic, social and environmental players. Examining the even matrix for three players with different choices can easily provide a very small change of consequences according to final results of models.
Conclusion
By using the game theory while solving concurrency and considering the damages caused by dam construction for the parameters (economy, environment, and community) regarding AHP model (which is based on scoring the damages and summing them) an alternative method was introduced.

کلیدواژه‌ها [English]

  • Dam numbers
  • game theory
  • Dams locationg
  • Nash equilibrium
  • Environment
-صفاری، ن. و ضرغامی، م.، ۱۳۹۰. تخصیص بهینه آب سطحی حوضه دریاچه ارومیه به استان­های ذینفع با استفاده از نظریه بازی­ها، ششمین کنگره ملی مهندسی عمران، سمنان، دانشگاه سمنان.
-پورسپاهی سامیان، ح. و کراچیان، ر.، ۱۳۹۰. تخصیص آب در رودخانه­های مشترک: کاربرد تئوری بازی­ها، ششمین کنگره ملی مهندسی عمران، سمنان، دانشگاه سمنان.
-غلامی مهیاری، ف. و علی­محمدی، س.، ۱۳۹۱. حل اختلاف در مدیریت انتقال بین­حوضه­ای آب با استفاده از تئوری بازی­ها، نهمین سمینار بین­المللی مهندسی رودخانه، دانشگاه شهید چمران اهواز، اهواز.
-دانش یزدی، م.، ابریشم چی، ا. و تجریشی، م.، ۱۳۹۳. حل مناقشات در مدیریت تخصیص منابع آب با استفاده از نظریه بازی، مطالعه موردی: حوضه آبریز دریاچه ارومیه، فصلنامه آب و فاضلاب، دوره ۲۵، شماره ۹۰، ص ۲۳-۴۵.
-بنی­حنیف، م.ا. و نجفی مرغملی، س.، ۱۳۹۷. ارزیابی نظریه‌های بازی و ورشکستگی جهت تأمین حقابه زیست‌محیطی هورالهویزه، تحقیقات منابع آب ایران، شماره ۲۳، ص 12-22.
-پور مقدم، پ.، پرنا، ا.، علم­دوست، ع. و کراچیان، ر.، ۱۳۹۲. کاربرد تئوری بازی‌ها در مدیریت منابع آب زیرزمینی با تاکید بر کنترل نواسانات تراز آب، هفتمین کنگره ملی مهندسی عمران، دانشگاه سیستان و بلوچستان، زاهدان.
-ذراتی، ع.، منصوری، ع. و الوانکار، س.ر.، ۱۳۹۲. مقایسه کاربری و استفاده از چند سد کوتاه در حوضه آبریز به جای یک سد بلند در پایین دست، کنفرانس بین­المللی عمران، معماری و توسعه پایدار شهری، دانشگاه آزاد اسلامی واحد تبریز، تبریز.
-منصوری، ع. و لاریجانی، ی.، ۱۳۹۷. امکان­سنجی احداث چندین سد کوتاه به جای یک سد مرتفع در انتهای حوزه در پایین­دست حوزه آبریز سد با استفاده از روش AHP (مطالعه موردی: سد البرز)، اولین کنفرانس فرصت­ها و چالش­های مهندسی استان البرز، کرج: دانشگاه خوارزمی، دانشگاه خوارزمی تهران، سازمان مدیریت و برنامه‌ریزی استان البرز.
-ایمان، ص. و منصوری، ع.، ۱۳۹۷. مدل­سازی و ارزیابی سدهای کوتاه در بخش­های مختلف حوزه آبریز به جای یک سد بلند در انتهای حوزه آبریز با رویکرد نظریه بازی­ها مطالعه موردی سد الغدیر، ساوه، کنفرانس عمران، معماری و شهرسازی کشورهای جهان ­اسلام، تبریز، دانشگاه تبریز: دانشگاه شهید مدنی آذربایجان، دانشگاه علمی کاربردی شهرداری تبریز.
 
 
 
-Andik, B. and Niksokhan, M.H., 2020. Waste load allocation under uncertainty using game theory approach and simulation-optimization process, Journal of Hydroinformatics.
-Bhagabati, S., Kawasaki, A., Babel, M., Rogers, P. and Ninsawat, S., 2014. A cooperative game analysis of transboundary hydropower development in the lower Mekong: case of the 3S Sub-basins. Water resources management, v. 28(11), p. 3417-3437.
-Bogardi, I. and Szidarovsky, F., 1976. Application of game theory in water management, Applied Mathematical Modelling, v. 1(1), v. 16-20.
-Cournot, A.A., 1897. Researches into the Mathematical Principles of the Theory of Wealth, Macmillan, 213 p.
-Crawford, V.P. and Varian, H.R., 1979. Distortion of preferences and the Nash theory of bargaining, Economics Letters, v. 3(3), p. 203-206.
-Dinar, A., Ratner, A. and Yaron, D., 1992. Evaluating cooperative game theory in water resources. Theory and decision, v. 32(1), p. 1-20.
-Dinar, A. and Hogarth, M., 2015. Game theory and water resources critical review of its contributions, progress and remaining challenges. Foundations and Trends® in Microeconomics, v. 11(1-2), p. 1-139.
-Fudenberg, D. and Tirole, J., 1991. Perfect Bayesian equilibrium and sequential equilibrium. journal of Economic Theory, v. 53(2), p. 236-260.
-Fu, J., Zhong, P.A., Zhu, F., Chen, J., Wu, Y.N. and Xu, B., 2018. Water Resources Allocation in Transboundary River Based on Asymmetric Nash–Harsanyi Leader–Follower Game Model, Water, v. 10(3), 270 p. https://doi.org/10.3390/w10030270.
-Harsanyi, J.C., 1976. A solution concept forn-person noncooperative games. International Journal of Game Theory, v. 5(4), p. 211-225.
-Han, Q., Tan, G., Fu, X., Mei, Y. and Yang, Z., 2018. Water resource optimal allocation based on multi-agent game theory of HanJiang river basin, Water, v. 10(9), p. 1184; https://doi.org/10.3390/w10091184.
-Kreps, D.M. and Wilson, R., 1982. Sequential equilibria. Econometrica: Journal of the Econometric Society, v. 50(4), p. 863-894.
-Morgenstern, O. and Von Neumann, J., 1953. Theory of Games and Economic Behavior, Princeton university press, 345 p.
-Nash, J., 1953. Two-person cooperative games, Econometrica: Journal of the Econometric Society, v. 23, p. 128-140.
-Parrachino, I., Dinar, A. and Patrone, F., 2006. Cooperative game theory and its application to natural, environmental, and water resource issues: 3. application to water resources. The World Bank, http://hdl.handle.net/10986/8852.
-Qin, Q., Liu, Y. and Huang, J.P., 2020. A cooperative game analysis for the allocation of carbon emissions reduction responsibility in China's power industry. Energy Economics, v. 92, https://doi.org/10.1016/j.eneco.2020.104960.
-Rives, N.W., 1975. On the history of the mathematical theory of games, History of Political Economy, v. 7(4), p. 549-565.
-Rubinstein, A., 1982. Perfect equilibrium in a bargaining model. Econometrica: Journal of the Econometric Society, v. 50(1), p. 97-109.
-Rogers, P., 1969. A game theory approach to the problems of international river basins. Water resources research, v. 5(4), p.749-760.
-Raquel, S., Ferenc, S., Emery Jr, C. and Abraham, R., 2007. Application of game theory for a groundwater conflict in Mexico. Journal of environmental management, v. 84(4), p. 560-571.
-Rawas, F., 2020. Competition vs cooperation: application of game theory in the multi-agent coordination of a BC Hydropower system (Doctoral dissertation, THE DEGREE of MASTER OF APPLIED SCIENCE, University of British Columbia).
-Selten, R., 1965. "Spieltheoretische behandlung eines oligopolmodells mit nachfrageträgheit: Teil i: Bestimmung des dynamischen preisgleichgewichts." Zeitschrift für die gesamte Staatswissenschaft/Journal of Institutional and Theoretical Economics H. v.2, p. 301-324.
-Smith, J.M., 1970. Natural selection and the concept of a protein space, Nature, v. 225, p. 563-564. doi: 10.1038/225563a0.
-Sardar Shahraki, A. and Emami, S., 2020. The Economic Evaluation of Optimal Water Allocation Using Artificial Neural Network (Case Study: Moghan Plain), Iranian Economic Review, v. 24(3), p. 833-851.
-Zarei, A., Mousavi, S.F., Gordji, M.E. and Karami, H., 2019. Optimal reservoir operation using bat and particle swarm algorithm and game theory based on optimal water allocation among consumers, Water Resources Management, v. 33(9), p. 3071-3093.