ساختارهای زمین‌شناسی و نقش آن‌ها در کنترل کانی‌سازی در محدوده معدنی سرب و روی بهرامتاج، یزد، ایران مرکزی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

2 گروه ژئوفیزیک و آتش فشان شناسی، دانشگاه ناپل، ایتالیا

چکیده

محدوده معدنی سرب و روی بهرامتاج در 90 کیلومتری شمال­غرب شهر یزد و 10 کیلومتری جنوب­غرب عقدا، استان یزد قرار دارد. از لحاظ موقعیت زمین­شناسی معدن بهرامتاج در زون ایران مرکزی قرار می­گیرد. سنگ­های رخنمون یافته در معدن شامل سازندهای عقدا، لالون و واحدهای تفکیک نشده پرکامبرین تا کامبرین (سری دزو) است. کانسنگ موجود در محدوده متشکل از لنزها، رگه­ها و رگچه­های غیرسولفیدی روی و سرب مانند کانی­های اسمیت­زونیت، همی­مورفیت، هیدوزینکیت، سروزیت و به مقدار کمتر کانی­های سولفیدی سرب مانند گالن و اکسیدهای مس (مالاکیت، بچرریت و اوری­کلسیت) هستند که در سنگ‌های آهکی- دولومیتی پالئوزوئیک (بین شیل-کربنات یا توالی­های کربناته) تشکیل شده­اند. توالی­های سنگی منطقه تحت­تأثیر گسل­های ناحیه­ای از جمله گسل­های شمال فخرآباد (رورانده- معکوس با مولفه راستالغز راستگرد) و گسل امتدادلغز راستگرد نائین- سورک و شکستگی­های مرتبط با آن­ها که روند غالب شمال­شرقی- جنوب­غربی تا شرقی- غربی را دارا هستند، قرار گرفته­اند. لنزها و رگه­های کانی­سازی سرب و روی به خصوص کانی­های غیرسولفیدی روی در مناطق گسل، زون­های برشی و چین­خورده به­طور واضح دیده می­شود. مطالعات زمین ساختی نشان داد که گسترش کانی­سازی روی و سرب در راستای گسلش­های شمال­غربی- جنوب­شرقی بیانگر تاثیر کششی مربوط به سیستم شکستگی شمال­غرب- جنوب­شرق است، که سبب شده تا در پهنه­های کششی مرتبط با این سیستم، کانی­سازی سرب و روی گسترش بیشتری داشته باشد. گسل­های شمال شرق- جنوب­غرب که جوا­ن­تر از گسل­های دیگر بوده، نقش نسبتا کمتری در کانی­سازی غیرسولفیدی داشته ولی غالبا باعث جابجایی پهنه­های کانی­سازی­ شده­اند.

کلیدواژه‌ها


عنوان مقاله [English]

Geological structures and their role in control of mineralization in Bahramtaj Lead and Zinc deposit, Yazd province, Central Iran

نویسندگان [English]

  • Kazem Gholizadeh 1
  • Iraj Rasa 1
  • Mahammad Yazdi 1
  • Maria Boni 2
1 Department of Geology, Faculty of Earth Science, Shahid Beheshti University of Tehran, Tehran, Iran
2 Department of Geophysic and Vulcanology, University of Napoli, Italy
چکیده [English]

Extended Abstract
Introduction
Iran has large areas of carbonate rocks that host potential reserves of lead and zinc deposits due to suitable geodynamic conditions and carbonate platforms. So far, more than 300 zinc-lead deposits have been reported with sedimentary hosts in Iran. Bahramtaj lead and zinc deposit is located in Central Iran zone, which is hosted by Precambrian-Cambrian formations (Rizo, Dezo and Aqda). In this paper, an attempt has been made to present the structural formation model of Bahramtaj lead and zinc mineralization by combining the results obtained from the study of geological structures, the relationship between structures and specific mineralization.
Materials and methods
In this study, various geological structures such as faults, joints and folds at the local scale as well as in the Bahramtaj prospect area have been studied. After identifying the main and important structures influencing the region, the structural and tectonic status of Bahramtaj area, the relationship between geological structures and mineralization are also studied. Due to the availability of Google Earth images with an approximate accuracy of 30 meters, as well as the use of digital topographic images with an accuracy of 30 meters and ETM + images, and using remote sensing software, the tectonic position of the region has been discussed.
Results and Discussion
Faults
Existence of different generations of faults and fractures each related to a generation across fault zones has caused confusion and complexity of rock units in Bahramtaj mining area. Investigation of fault zones and geological structures related to fault movements (formation of fracture zones, fault gouge and fault breccia) in the faults of the area indicate their formation in fragile and shallow environments. The main stress trends of the region based on diagrams related to faults and fractures of the region, indicate their compliance with the stress distribution due to the performance of the main faults in the region, which are N044 and N337 in the direction of maximum stress in the region.
Folds
In Bahramtaj mining area, different changes in the type of deformation have occurred at different times. In the oldest rocks of the area, which are most exposed in the northern parts, Cambrian carbonate units show at least two generations of folds and various types of open and closed folds, inverted and asymmetrical in different scales. In most cases, the old corrugated edges are limited and broken by longitudinal faults, and due to the undertaken different stresses in different directions, a lot of rotation has occurred in the direction of their axis and geometry. Considering the structural condition of the region and the distribution of stress based on the existing structural evidence in the range and geometry of the folds of the younger generations, it is possible to imagine older clockwise rotation trends for this generation of the folds of the range. Regarding the formation, the folds of the area have been affected by the performance of the main fault in the region. Therefore, the predominant direction of the folds, show the azimuth N120.
Conclusion
Based on field evidence and studies, it was found that mineralization coincided with the activity of the strike-slip fault with a northwest-southeast direction. The development and expansion of mineralization in different regions in the two systems are different. Expansion of zinc and lead mineralization in the direction of northwest-southeast faults express the positive effect of east-west fault activity on the number of openings. Creation of convenient places in tensile fractures related to the northwest-southeast fracture system, has caused lead and zinc mineralization to be more widespread in the tensile zones associated with this system.

کلیدواژه‌ها [English]

  • Zink and lead mineralization
  • Bahramtaj mining district
  • faults
  • folds
  • Central Iran
-آقانباتی، ع.، 1383. زمین­شناسی ایران، انتشارات سازمان زمین­شناسی و اکتشافات معدنی کشور، چاپ اول، 606 ص.
-علائی، س. و فودازی، م.، 1385. نقشه زمین­شناسی 1:100000 عقدا، سازمان زمین­شناسی و اکتشافات معدنی کشور.
-عمیدی، م. و نبوی، م.ح.، 1368. نقشه زمین­شناسی 1:100000 سروبالا، سازمان زمین­شناسی و اکتشافات معدنی کشور.
-کوهجانی گوجی، و. و موسیوند، ف.، رجبی، ع.، 1396. ساخت و بافت، رخساره­های کانسنگ و الگوی تشکیل کانسار روی- سرب هفتهر، جنوب غرب عقدا، نهمین همایش ملی انجمن زمین­شناسی اقتصادی ایران.
-قلی زاده، ک.، رساء، ا.، یزدی، م.، بونی، م. و محمدی، م.، 1396. کانی­شناسی کانی­های غیرسولفیدی عنصر روی (کالامین) معدن روی- سرب بهرامتاج، سازمان زمین­شناسی و اکتشافات معدنی کشور.
-نبوی، م.ح.، 1355. دیباچه­ای بر زمین­شناسی ایران، انتشارات سازمان زمین­شناسی کشور، ۳۴۵ ص.
-رستمی پایدار، ق.، 1397. مطالعه دگرسانی، کانه­زایی و سیالات درگیر در کانسار روی- سرب حوض سفید (ایران مرکزی)، فصلنامه زمین­شناسی ایران، سال 12، شماره 47، ص 45-63.
 
 
 
-Alavi, M., 1991. Tectonic map of the Middle East: Tehran. Geological Survey of Iran, scale 1:5,000,000.
-Amiri, A., 2017. Mineralogical evolutions of carbonate-hosted Zn-Pb-(F-Mo) deposits in Kuhbanan-Bahabad area, Central Iran: metal source approach, Journal of Tethys, v. 5, (1), p. 001-032.
-Blenkinsop, T., 2002. Deformation microstructures and mechanisms in minerals and rocks, University of Zimbabwe, Harare, Zimbabwe.
-Boni, M. and Mondillo, N., 2015. The Calamines and the others: the great family of supergene nonsulfide zinc ores. Review paper. Ore Geology Reviews, v. 67, p. 208-233.
-Boni, M., Mondillo, N. and Balassone, G., 2011. Zincian dolomite: a peculiar dedolomitization case? Geology, v. 39, p. 183-186.
-Berberian, M. and King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran: Canadian Journal of Earth Sciences, v. 18, p. 210-265.
-Brown, L.J. and Solar, M., 1998. Model of the copper and polymetallic vein family of deposits- applications in Slovakia, Hungary and Romania. International Geology Review.
-Brogi, A., 2006. Evolution, formation mechanism and kinematics of a contractional shallow shear zone within sedimentary rocks of the Northern Apennines (Italy). Eclogae Geologicae Helvetiae.
-Davies, H.L., 2012. The geology of New Guinea - the cordilleran margin of the Australian continent.
-Ehya, F., Lotfi, M. and Rasa, I., 2010. Emarat carbonate-hosted Zn–Pb deposit, Markazi Province, Iran: A geological, mineralogical and isotopic (S, Pb) study: Journal of Asian Earth Sciences, v. 37, p. 235-249.
-Forster, H., 1978. Mesozoic - Cenozonic metallogensis in Iran - Geological Society- London, 135 p.
-Ghazban, F., McNutt, R.H. and Schwarcz, H.P., 1994. Genesis of sediment-hosted Zn-Pb-Ba deposits in the Iran Kouh district, Esfaha area, West-Central Iran: Economic Geology, v. 89, p. 187-201.
-Hill, K.C. and Raza, A., 1999. Arc continental collision in papua guinea-constraints from fission track thermocoronology: tectonics, v. 18, p. 184-198.
-Holm, R.J., Spandler, C. and Richards, S.W., 2015. Continental collision, orogenesis and arc magmatism of the Miocene Maramuni arc, Papua New Guinea.Gondwana Research.
-Karimpour, M.H., Malekzadeh Shafaroudi, A., Alaminia, Z., Esmaeili Sevieri, A. and Stern, C.R., 2019. New hypothesis on time and thermal gradient of subducted slab with emphasis on dolomitic and shale host rocks in formation of Pb-Zn deposits of Irankuh-Ahangaran belt. Journal of Economic Geology, v. 10(2), p. 677-706
-Lecumberri-Sanchez, P., Romer, R.L., Luders, V. and Bodnar, R., 2014. Genetic relationships between silver-leadzinc mineralization in the Wutong deposit, Guangxi Province and Mesozoic granite magmatism in the Nanling belt, southeast China. Mineralium Deposita, v. 49, p. 353-369.
-Luke, G., Nigel, J., Cook, C., Ciobanu, L. and Benjamin, P.W., 2015. Trace and minor elements in galena: A reconnaissance LAICP-MS study. American Mineralogist, v. 100, p. 548-569.
-Miller, E.L., Gehrels, G., Pease, V. and Sokolov, S., 2010. Stratigraphy and U-Pb detrital zircon geochronology of Wrangel Island, Russia: Implications for Arctic paleogeography. American Association of Petroleum Geologists Bulletin, v. 94, p. 268-284.
-Mohajjel, M. and Fergusson, C.L., 2013. Jurassic to Cenozoic tectonics of the Zagros orogeny in northwestern, Iran International Geology Review.
-Momenzadeh, M., 1976. Stratabound lead-zinc ores in the lower Cretaceous and Jurassic sediments in the Malayer–Esfahan district (west central Iran), lithology, metal content, zonation and genesis, Heidelberg, University of Heidelberg.
-Montest, L.G.J. and Hirth, G., 2003. Grain size evolution and the rheology of ductile shear zone: from laboratory experiments to postseismic creep. Earth and Planetary Science Letters.
-Nabatian, GH., Rastad, E., Neubauer, F., Honamand, M. and Ghaderi, M., 2015. Iron and FeMn Mineralization in Iran implications for Tethyan metallogeny, Australian Journal of Earth Sciences, v. 62, p. 211-241
-Newton, T., 2013. Geochemistry of the Timberville Zn-Pb District, Rockingham County, VA. Ph.D. thesis, University of Maryland, Maryland, USA, 137 p.
-Peacock, S.M., 2002. Blueschist-facies metamorphism, shear heating and P-T- t paths in subduction shear zones. Journal of Geophysical Research, 97 p.
-Rajabi, A., Rastad, E., Alfonso, P. and Canet, C., 2012a. Geology, ore facies and sulfur isotopes of the Koushk ventproximal sedimentary-exhalative deposit, Posht-e-Badam Block, Central Iran: International Geology Review.
-Rajabi, A., Rastad, E. and Canet, C., 2012b. An introduction to metallogeny of Permo-Triassic Carbonate-hosted Zn-Pb and F deposits of Iran: Application for future mineral exploration: Australian Journal of Earth Science, v. 60, p. 197-216
-Rajabi, A., Rastad, E. and Canet, C., 2012c. Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: geotectonic setting and data integration for future mineral exploration. International Geology Review, v. 54(14), p. 1649-1672.
-Ramazani, M. and Tucker, R.D., 2003. The Saghand region, central Iran, U-Pb geochronology, petrogenesis and implications for Gondwana tectonics, American Journal of Science, v. 303, p. 622-665.
-Ramsay, J.G. and Huber, M.I., 1987. The Techniques of Modern Structural Geology, Vol. 2 Folds and Fractures. Pergamon Press, London, 365 p.
-Schellart, W.P., Stegman, D.R., Farrington, R.J. and Moresi, L., 2011. Influence of lateral slab edge distance on plate velocity, trench velocity, and subduction partitioning. J. Geophys, doi.org/10.1029/2011JB008535.
-Stearns, D.W., 1968. certain aspects of fractures in naturally deformed rocks, terrestrial sci, 285 p.
-Verdel, C., Wernicke, B.P., Hassanzadeh, J. and Guest, B., 2011. A Paleogene extensional arc flare-up in Iran. Tectonics 30, TC3008.
-Wilkinson, J.J., 2014. Sediment-hosted zinc-lead mineralization: Processes and perspectives. Treatise on Geochemistry, second Edition, Elsevier, v. 45, p. 219-248.
-Yasemi, N., Ghaderi, M., Madanipour, M. and Taghilou, B., 2017. Structural control on overprinting high-sulfidation epithermal on porphyry mineralization in the Chodarchay deposit, northwestern Iran, ore Geology Reviews.