نقش تغییرات دما در پایداری محیط‌زیست شهر تهران

نوع مقاله : علمی -پژوهشی

نویسندگان

گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

10.29252/esrj.12.1.222

چکیده

مطالعه حاضر با سنجش تغییرات کمینه، بیشینه و میانگین دمای هوا و دمای سطح زمین و تغییرات پوشش گیاهی در سه دهه اخیر، پایداری محیط‌زیست شهر را در برابر گرمایش بررسی می‌کند. برای این منظور، تغییرات دمای کمینه، بیشینه و میانگین ایستگاه‌های مهرآباد و شمیران از سال 1988 تا 2017 مورد بررسی قرار گرفته است. تصاویر لندست نیز برای بررسی تغییرات سطح زمین به کار رفته است. نتایج تحلیل دمای هوا نشان دهنده وجود روند افزایشی در دوره زمانی مذکور است. با انجام آزمون پتیت، نقطه تغییر در اواخر دهه 1990 و ابتدای 2000 میلادی به‌دست آمد؛ به‌طوری‌که میانگین دمای هوا C˚1 در ایستگاه مهرآباد و C˚2/1 در شمیران نسبت به قبل از نقطه تغییر افزایش نشان می‌دهد. رشد افقی شهر با کاهش وسعت پوشش گیاهی همراه بوده و میانگین دمای سطح زمین بیش از C˚2 افزایش یافته است. از این‌رو، روند افزایشی دما همراه با ساخت‌وسازهای بی‌رویه و ناپایداری فضای سبز، به عنوان عوامل اثرگذار بر پایداری محیط‌زیست مورد توجه قرار گرفته است. این مسئله نشانه‌ای از تشدید گرمایش و ضرورت ارائه راهکارهای مناسب است.

کلیدواژه‌ها


عنوان مقاله [English]

The role of temperature changes in environmental sustainability of Tehran

نویسندگان [English]

  • Farimah Sadat Jamali
  • Shahriar Khaledi
Department of Physical Geography, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Extended abstract
Introduction
The global temperature in 2017 increased to almost 1˚C above pre-industrial levels. The studies on temperature time series in Iran as well as the city of Tehran demonstrate substantial changes within recent decades. The increase in global warming, particularly in cities, influences human health and ecosystems. Meanwhile, different types of green spaces can be a comprehensive tool to maintain urban environmental sustainability by improving air quality, controlling temperature, and reducing the cost of energy consumption in buildings.
On the other hand, through city development, the natural and green spaces are under the pressure of rapid urbanization. It is necessary to evaluate the sustainability of green spaces and their impact on urban sustainability to achieve environmental sustainability. This paper studies the changes in air temperature, land surface temperature, and land use/land cover of the city of Tehran within 30 years from 1988 to 2017 to evaluate the urban environmental sustainability.
Data and methods
The city of Tehran has 212.3mm annual precipitation and an average temperature of 17.6˚C, based on Mehrabad station records from 1960 to 2017. It has a population density of almost 13600 persons per square kilometer. Daily temperature records of Mehrabad and Shemiran stations from 1988 to 2017 were obtained from Iran Meteorological Organization to measure the changes in air temperature. Anderson-Darling, Mann-Kendall, Sen’s slope, and Pettitt’s statistical tests as well as monthly plotting and annual temperature time series with trend components were employed to analyze monthly and annual temperatures.
Two daytime Landsat images in summer were used to study the changes in land use/land cover and land surface temperature: images of 18 August 1988 (TM) and 25 July 2017 (OLI TIRS). Through supervised classification, land use/land cover was classified into four classes of water, vegetation, built-up and bare soil. Land surface temperatures were calculated by using thermal bands (band 6 of TM and band 10 of TIRS), calculating brightness temperature, NDVI, proportion of vegetation and emissivity. Consequently, environmental sustainability was evaluated by analyzing the changes in air temperature, vegetation cover and land surface temperature.
 
Results and discussion
The Anderson-Darling test results for monthly and annual mean, maximum, and minimum air temperature time series showed that the time series are not normally distributed. Therefore, Mann-Kendall, seasonal Mann-Kendall, Sen’s slope, and Pettitt’s tests were employed to detect trends. The trends in monthly and annual air temperature time series (mean, maximum, and minimum were statistically significant with p-values less than 0.05. Pettitt’s test results showed that the changing points were in the late 1990s and early 2000s. The changes in temperature before and after the changing points show 0.8˚C and 1˚C increase in minimum temperature and 1.5˚C and 1˚C increase in maximum temperature in Shemiran and Mehrabad stations, respectively.
Comparing the land use/land cover and the extent of green spaces within the 30 years period, it demonstrates urban sprawl and expansion of built-up areas in western parts of Tehran. Also green patches, particularly farmlands and gardens, significantly shrunk in southwest, west and north Tehran. During this period, the extent of vegetation cover decreased by 6.8%. The minimum land surface temperature threshold within the study period increased 5.3˚C in summer 2017 compared to 1988. The increase in surface temperature was accompanied by high temperatures in southern and western districts of the city, the districts with noticeable green patch decline.
Uncontrolled construction, horizontal expansion of the concrete structures in the city, decrease in the extent and fragmentation of green spaces along with the increase in the mean land surface temperature by 2.6˚C within the study period indicate the unsustainability of green spaces as an important element of urban land use and environmental infrastructure.
Conclusion
According to the results of the study, air temperature in Tehran has increased with a statistically significant trend. The changes in land use/land cover were accompanied by built-up development and vegetation cover decline while the land surface temperatures increased. The course of actions during the last three decades demonstrate the environmental unsustainability of the city of Tehran. Implementing strategies following nature-based approaches, suitable for the urban climate and existing limitations, may help adapt to the impacts of temperature rise and reduce greenhouse gases emission.

کلیدواژه‌ها [English]

  • Sustainability
  • Development
  • Tehran
  • Temperature
  • Trend
-حجازی زاده، ز. و پروین، ن.، 1388. بررسی تغییرات دما و بارش تهران طی نیم قرن اخیر، جغرافیا و برنامه ریزی منطقه‌ای، پیش شماره پاییز و زمستان 1388، ص 43-56.
-خالدی، ش. و کرمی، ف.، 1395. شهرها و تغییر آب‌وهوا، قطب توسعه پایدار، تهران، 120 ص.
-خالدی، ش.، متولی، ص. و خالدی، ش.، 1396. میکروکلیماتولوژی، شهریار خالدی، تهران، 210 ص.
-رضویان، م.، کانونی، ر. و یارمرادی، ک.، 1395. محیط زیست شهری، نشر علم، تهران، 377 ص.
-شهرداری تهران، 1386. سند اصلی طرح راهبردی - ساختاری توسعه و عمران شهر تهران (طرح جامع تهران)، مصوبه شورایعالی شهرسازی و معماری ایران، شهرداری تهران، تهران، 64 ص.
-علیزاده چوبری، ا. و نجفی، م.، 1396. روند تغییرات دمای هوا و بارش در مناطق مختلف ایران، فیزیک زمین و فضا، دوره 43، شماره 3، ص 569-584.
-قدوسی، م.، مرید، س. و دلاور، م.، 1392. مقایسه روش‌های روندزدایی در سری‌های زمانی دما و بارش، نشریه هواشناسی کشاورزی، جلد 1، شماره 2، ص 32-45.
-یزدان‌پناه، م.، یاوری، ا.، زبردست، ل. و آل‌محمد، س.، 1394. ارزیابی زیرساخت‌های سبز شهری به منظور اصلاح تدریجی آن‌ها در سیمای سرزمین تهران، محیط‌شناسی، دوره 41، شماره 3، ص 613-625.
 
 
 
-Atiqul Haq, S.M., 2011. Urban Green Spaces and an Integrative Approach to Sustainable Environment: Journal of Environmental Protection, v. 2, p. 601-608.
-Avdan, U. and Jovanovska, G., 2016. Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data: Journal of Sensors, v. 2016, ID 1480307, p. 1-8.
-Benton-Short, L., Keeleya, M. and Rowland, J., 2017. Green infrastructure, green space, and sustainable urbanism: geography’s important role: Urban Geography, v. 38, p. 1-22. https://doi.org/10.1080/02723638.2017.1360105
-Chavez, P.S.J., 1996. Image-based atmospheric corrections- revisited and revised: Photogrammetric Engineering & Remote Sensing, v. 62(9), p. 1025-1036.
-Congedo, L., 2016. Semi-Automatic Classification Plugin Documentation- Release 5.3.2.1. doi: 10.13140/RG.2.2.29474.02242/1
-Dadson, S.J., 2017. Statistical Analysis of Geographical Data: An Introduction. 1st Edition: John Wiley and Sons, Chichester, 264 p.
-Fathi, N., Bounoua, L. and Messouli, M., 2019. A Satellite Assessment of the Urban Heat Island in Morocco: Canadian Journal of Remote Sensing. doi: 10.1080/07038992.2019.1601007
-He, C., Shi, P., Xie, D. and Zhao, Y., 2010. Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach: Remote Sensing Letters, v. 1(4), p. 213-221.
-Hedquist, B.C. and Brazel, A.J., 2014. Seasonal variability of temperatures and outdoor human comfort in Phoenix, Arizona, U.S.A.: Building and Environment, v. 72, p. 377-388.
-IPCC, 2018. Special Report: Global Warming of 1.5ºC- Summary for policymakers, World Meteorological Organization, Geneva, 32 p.
-Kendall, M.G., 1976. Rank Correlation Methods. 4th Edition: Charles Griffin, London, 202 p.
-Kendall, M., Stuart, A. and Ord, J.K., 1983. The Advanced Theory of Statistics, Vol.3. Design and Analysis, and Time Series. 4th Edition: Charles Griffin, High Wycombe, 780 p.
-Mann, H.B., 1945. Non-parametric test against trend: Econometrica, v. 13, p. 245-259.
-Marando, F., Salvatori, E., Sebastiani, A., Fusaro, L. and Manes, F., 2019. Regulating Ecosystem Services and Green Infrastructure: assessment of Urban Heat Island effect mitigation in the municipality of Rome, Italy: Ecological Modelling, v. 392, p. 92-102.
-Martos, A., Pacheco-Torres, R., Ordóñez, J. and Jadraque-Gago, E., 2016. Towards successful environmental performance of sustainable cities: Intervening sectors. A review: Renewable and Sustainable Energy Reviews, v. 57, p. 479-495.
-Mirzaei, P.A., 2015. Recent challenges in modeling of urban heat island: Sustainable Cities and Society, v. 19, p. 200-206.
-Moghbel, M. and Shamsipour, A.A., 2019. Spatiotemporal characteristics of urban land surface temperature and UHI formation: a case study of Tehran, Iran: Theoretical and Applied Climatology, p. 1-14. https://doi.org/10.1007/s00704-018-2735-7
-Pettitt, A.N., 1979. A non-parametric approach to the change-point problem: Journal of the Royal Statistical Society, Applied Statistics, v. 28(2), p. 126-135.
-Rosenzweig, C., Solecki, W., Romeo-Lankao, P., Shagun, M., Dhakal, S. and Ali Ibrahim, S., 2018. Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network: Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 811 p.
-Sen, P.K., 1968. Estimates of the Regression Coefficient Based on Kendall’s Tau: Journal of the American Statistical Association, v. 63(324), p. 1379-1389.
-Shiflett, S.H., Liang, L.L., Crum, S.M., Feyisa, G.L., Wang, J. and Jenerette, G.D., 2017. Variation in the urban vegetation, surface temperature, air temperature nexus: Science of the Total Environment, v. 579, p. 495-505.
-Sobrino, J.A., Jimenez-Munoz, J.C. and Paolini, L., 2004. Land surface temperature retrieval from LANDSAT TM 5: Remote Sensing of Environment, v. 90, p. 434-440.
-Solecki, W., Seto, K.C., Balk, D., Bigio, A., Boone, C.G., Creutzig, F., Fragkias, M., Lwasa, S., Marcotullio, P., Romero-Lankao, P. and Zwickel, T., 2015. A conceptual framework for an urban areas typology to integrate climate change mitigation and adaptation: Urban Climate, v. 14, p. 116-137.
-Stephens, M.A., 1974. EDF Statistics for Goodness of Fit and Some Comparisons: Journal of American Statistical Association, v. 69(347), p. 730-737.
-Tayyebi, A., Shafizadeh-Moghadamb, H. and Tayyebi, A.H., 2018. Analyzing long-term spatio-temporal patterns of land surface temperature in response to rapid urbanization in the mega-city of Tehran: Land Use Policy, v. 71, p. 459-469.
-Wang, Y., Bakker, F., de Groot, R., Wortche, H. and Leemans, R., 2015. Effects of urban trees on local outdoor microclimate: synthesizing field measurements by numerical modelling: Urban Ecosystems, v. 18, p. 1305-1331.
-Wang, S., Ma, Q., Ding, H. and Liang, H., 2018. Detection of urban expansion and land surface temperature change using multi-temporal Landsat images: Resources, Conservation and Recycling, v. 128, p. 526-534.
-World Economic Forum, 2019. The Global Risks Report 2019- 14th Edition. The World Economic Forum, Geneva, 107 p.
-Yeh, C., Wang, J., Yeh, H. and Lee, C., 2015. Spatial and Temporal Streamflow Trends in Northern Taiwan: Water, v. 7, p. 634-651.
-Zhou, D., Zhang, L., Hao, L., Sun, G., Liu, Y. and Zhu, C., 2016. Spatiotemporal trends of urban heat island effect along the urban development intensity gradient in China: Science of the Total Environment, v. 544, p. 617-626.