سنگ‌نگاری، شیمی‌کانی‌ها و شکل‌گیری پریدوتیت در آمیزه افیولیتی حیدرآباد (شرق ایران)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زمین شناسی، دانشکده علوم زمین، دانشگاه شهیدچمران اهواز، اهواز، ایران

10.52547/esrj.13.1.1

چکیده

آمیزه افیولیتی حیدرآباد در کمپلکس افیولیتی نهبندان، واقع در زمین درز سیستان، در مرز میان بلوک­های قاره­ای لوت و افغان واقع شده است. این سنگ­ها به­طور عمده شامل پریدوتیت گوشته­ای، لیستونیت، گابرونوریت، گابرو توده­ای و لایه­ای، بازالت بالشی و رسوبات عمیق دریایی است، که در جایگاه پشته میان اقیانوسی (MOR) تشکیل شده­اند. کانی­های الیوین، ارتوپیروکسن، کلینوپیروکسن و اسپینل سازنده­های اصلی پریدوتیت­های گوشته آمیزه افیولیت حیدرآباد هستند. الیوین­های پریدوتیت­های گوشته‌ای اغلب سرپانتینی شده­اند. مطالعات تفصیلی مایکروپروب روی کروم­اسپینل­های موجود در پریدوتیت­های گوشته­ای مقادیر بسیار بالای Mg# (4/62 تا 67 درصد وزنی) و Cr# (1/18 تا 5/34 درصد وزنی) و مقادیر پایین TiO2 (میانگین 05/0درصد وزنی) را نشان می­دهد. میزان Fe+3 در کروم اسپینل­های موجود در پریدوتیت­های گوشته­ای مورد مطالعه بسیار پایین (میانگین 02/0 درصد وزنی) است که نشان­دهنده تبلور در شرایط فوگاسیته پایین اکسیژن است. همچنین ترکیب الیوین­ها از نوع فورستریت (90.90- Fo90.07)، ارتوپیروکسن­ها از نوع انستاتیت، کلینوپیروکسن­ها از نوع دیوپسید و اسپینل­ها از نوع آلومینیوم و کروم­دار هستند. نمودارهای جداکننده محیط زمین­ساختی برای هارزبورژیت و لرزولیت ویژگی­های پریدوتیت­های آبیسال را نشان می­دهند.

کلیدواژه‌ها


عنوان مقاله [English]

Petrography, minerals chemistry and genesis of peridotite in the Heydarabad ophiolitic melange (East of Iran)

نویسندگان [English]

  • Mansour Adelpour
  • Alireza Zarasvandi
Department of Geology, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Introduction
The Heydarabad ophiolitic melange is hosted by the Nehbandan Ophiolite Complex (NOC), which crops out in the Sistan Suture Zone (SSZ) that marks the boundary between the Lut and Afghan continental blocks. The major rocks of this area include mantle peridotites, listwaenite, gabbronorite, cumulate and layered gabbro, pillow basalt and deep-sea pelagic sediments that were formed in the mid-ocean ridge (MOR). Olivine, orthopyroxene, clinopyroxene and spinel are rock forming minerals of Heydarabad ophiolite mantle peridotite.
Materials and methods
After field studies, thin and polished sections were prepared for petrological and mineralogical studies. Whole-Rock major and some trace elements were obtained by X-ray fluorescence (XRF) spectrometer for SiO2, TiO2, K2O, Al2O3, FeO, CaO, Na2O, Cr2O3, MnO, MgO and NiO. Trace element and rare earth element (REE) concentrations were determined by using a Thermo Series X-I inductively Coupled Plasma Mass Spectrometer (ICP-MS). Also, 8 thin- polished samples (least fractured and altered) of wall rock were analyzed by electron probe microanalysis (EPMA), using a Cameca SX100 at the Iranian Mines and Mineral Industries Development and Renovation Organization (IMIDRO) with a 1-3 μm spot size, 20 nA beam current and a 15 kV acceleration voltage.
Result and Discussion
Most of the olivines from mantle peridotites are serpentinized. The detailed electron microprobe study revealed very high Mg# (62.4 to 67 wt.%), Cr# (18.1 to 34.5 wt.%) and very low TiO2 content (averaging 0.05 wt.%) for chromian spinels in mantle peridotites. The Fe+3 is very low (averaging 0.02 wt.%) in the chromian spinel of mantle peridotites which reflects crystallization under the low oxygen fugacity. The composition of olivine shows that forsterite type (Fo90.07-90.90), orthopyroxene is enstatite, clinopyroxene is diopside and spinels are Al-rich Cr-spinel. Tectonic environment discrimination diagrams for the harzburgite and lherzolite shows abyssal environment.
Conclusion
Hyderabad ophiolite melange consists of peridotite rock units (serpentine and listonite), lherzolite, gabbro, gabbronorite, plate dykes, and pillow lava, which are faulted. The mantle peridotite of this area is composed mostly of harzburgite and lherzolite. Based on mineral chemistry studies, harzburgite and lherzolite have olivine which is forsterite, orthopyroxene which is enstatite and clinopyroxene that is diopside. The peridotites of the study area contain Mg-rich olivines, Cr-spinels and Al-orthopyroxenes and are in the range of deep peridotites based on spinel and olivine chemistry. Also, high Mg value in mentioned minerals and high percentage of forsterite in olivines indicate the tectonic origin of these rocks. Orthopyroxenes and clinopyroxenes are Cr-rich, indicating limited partial melting of peridotites. Mineralogy studies show the relationship of these rocks with the oceanic environment. The composition of spinels in the peridotites shows that the type of high Al, with Mg and Cr is 62.4 to 67 wt% and 18.1 to 34.5 wt%, respectively. They are considered as spinels formed in Abyssal peridotites. Geochemical studies show that Hyderabad peridotites are mantle peridotites that are formed by melting 11 to 16% of a prepared mantle of lherzolitic spinel. The composition of chromium spinels in these peridotites is in the Alpine type range and their tectonic environment is more compatible with MOR peridotites.

کلیدواژه‌ها [English]

  • Ophiolitic melange
  • Peridotite
  • Heydarabad
  • Minerals chemistry
  • Deep
  • Nehbandan
 
-Ahmed, A.H. and Surour, A.A., 2016. Fluid-related modifications of Cr-spinel and olivine from ophiolitic peridotites by contact metamorphism of granitic intrusions in the Ablah area, Saudi Arabia: Journal of Asian Earth Sciences, v. 122, p. 58-79.
-Ahmed, A.H., Gharib, M. and Arai, S., 2012. Characterization of the thermally metamorphosed mantle–crust transition zone of the Neoproterozoic ophiolite at Gebel Mudarjaj, south Eastern Desert, Egypt: Lithos, v. 1, p. 42-143.
-Allahyari, K., Saccani, E., Pourmoafi, M., Beccaluva, L. and Masoudi, F., 2010. Petrology of mantle peridotites and intrusive mafic rocks from the Kermanshah ophiolitic complex (Zagros belt, Iran): implications for the geodynamic evolution of the Neo-Tethyan oceanic branch between Arabia and Iran: Ofioliti, v. 35, p. 71-90.
-Arai, S., 1994. Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chemical Geology, v. 113, p. 191-204.
-Azer, M.K., 2013. Evolution and economic significance of listwaenites associated with Neoproterozoic ophiolites in south eastern Desert, Egypt. Geologica Acta: An international earth science journal, v. 11, p. 113-128.  
-Barrat, J., Greenwood, R., Keil, K., Rouget, M., Boesenberg, J., Zanda, B. and Franchi, I., 2016. The origin of aubrites: Evidence from lithophile trace element abundances and oxygen isotope compositions: Geochimica et Cosmochimica Acta, v. 192, p. 29-48.
-Basch, V., Rampone, E., Crispini, L., Ildefonse, B. and Godard, M., 2017. Textural evolution of a dunitic matrix during formation of hybrid troctolites: Insights from the Monte Maggiore peridotitic body (Corsica, France): Paper presented at the EGU General Assembly Conference Abstracts.
-Batanova, V., Brügmann, G., Bazylev, B., Sobolev, A., Kamenetsky, V. and Hofmann, A., 2008. Platinum-group element abundances and Os isotope composition of mantle peridotites from the Mamonia complex, Cyprus: Chemical Geology, v. 248, p. 195-212.
-Bayet-Goll, A., Monaco, P., Jalili, F. and Mahmudy-Gharaie, M.H., 2016. Depositional environments and ichnology of upper Cretaceous deep-marine deposits in the Sistan Suture Zone, Birjand, Eastern Iran: Cretaceous Research, v. 60, p. 28-51.
-Bhat, I.M., Ahmad, T. and Rao, D.S., 2017. Compositional variability of spinel-group minerals from the Shergol serpentinized peridotites along Indus suture zone, Ladakh Himalaya (India): Constraints on tectonomagmatic history: Chemie der Erde-Geochemistry, v. 77, p. 587-595.
-Bröcker, M., Rad, G.F., Burgess, R., Theunissen, S., Paderin, I., Rodionov, N. and Salimi, Z., 2013. New age constraints for the geodynamic evolution of the Sistan Suture Zone, eastern Iran: Lithos, v. 170, p. 17-34.
-Davodi, Z., Rahgoshay, M. and Monsef, I., 2014. Geochemistry and petrogenesis of Neyriz ophiolitic complex (southwest of Iran): Petrology, v. 5, p. 56-70.
-Deer, W.A., Howie, R.A. and Zussman, J., 1992. An introduction to the rock-forming minerals: Longman Scientific and Technical-Hong Kong,  696 p.
-Dick, H.J. and Bullen, T., 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas: Contributions to mineralogy and petrology, v. 86, p. 54-76.
-Dilek, Y. and Furnes, H., 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere: GSA Bulletin, v. 123, p. 387-411.
-Dioh, E., Béziat, D., Grégoire, M. and Debat, P., 2009. Origin of rare earth element variations in clinopyroxene from plutonic and associated volcanic rocks from the Foulde basin, Northern Kedougou inlier, Senegal, West Africa: European Journal of Mineralogy, v. 21, p. 1029-1043.
-Ebrahimi, R., Delavari, M. and Dolati, A., 2017. Geochemistry of mantle peridotites from the Sistan zone (west of Zahedan and north of Sahl Abad), eastern Iran: Kharazmi Journal of Earth Sciences, v. 3, p. 1-24.
-Fotoohi-Rad, G., Droop, G. and Burgess, R., 2009. Early Cretaceous exhumation of high‐pressure metamorphic rocks of the Sistan Suture Zone, eastern Iran: Geological Journal, v. 44, p. 104-116.
-Frost, B.R. and Beard, J.S., 2007. On silica activity and serpentinization: Journal of petrology, v. 48, p. 1351-1368.
-Ghaseminejad, F. and Torabi, G., 2014. Petrography and mineral chemistry of wehrlites in contact zone of gabbro intrusions and mantle peridotites of the Naein ophiolite: Economic Geology, v. 6, p. 291-304.
-González-Jiménez, J.M., Proenza, J.A., Camprubí, A., Centeno-García, E., González-Partida, E., Griffin, W.L. and Pearson, N.J., 2011. Chromite deposits at Loma Baya: Petrogenesis and clues for the origin of the coastal Guerrero Composite Terrane in Mexico. Paper presented at the 11th SGA Biennial Meeting-Let’s talk ore deposits.
-Guo, G., Yang, J., Liu, X., Xu, X., Liu, Z. and Ba, D., 2015. Mid-ocean ridge (MOR) and suprasubduction zone (SSZ) geological events in the Yarlung Zangbo suture zone: Evidence from the mineral record of mantle peridotites: Journal of Asian Earth Sciences, v. 110, p. 33-54.
-Haggerty, S., 1989. Upper mantle opaque mineral stratigraphy and the genesis of metasomites and alkali-rich melts: Kimberlites and Related Rocks, v. 2, p. 687-699.
-Hellebrand, E., Snow, J.E., Dick, H.J. and Hofmann, A.W., 2001. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites: Nature, v. 410, p. 677-681.
-Hickey, R.L. and Frey, A.F., 1982. Geochemical characteristiccs of boninite series volcanics: implications for their source: Geochimica et Cosmochimica Acta, v. 46, p. 2099-2115.
-Hirose, K. and Kawamoto, T., 1995. Hydrous partial melting of lherzolite at 1 GPa: The effect of H2O on the genesis of basaltic magmas: Earth and Planetary Science Letters, v. 133, p. 463-473.
-Irvine, T., 1967. Chromian spinel as a petrogenetic indicator: Part 2. Petrologic applications: Canadian Journal of Earth Sciences, v. 4, p. 71-103.
-Ishikawa, A., Kaneko, Y., Kadarusman, A. and Ota, T., 2007. Multiple generations of forearc mafic-ultramafic rocks in the Timor–Tanimbar ophiolite, eastern Indonesia: Gondwana Research, v. 11, p. 200-207.
-Jaques, A. and Green, D., 1980. Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts: Contributions to Mineralogy and Petrology, v. 73, p. 287-310.
-Kamenetsky, V.S., Crawford, A.J. and Meffre, S., 2001. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks: Journal of Petrology, v. 42, p. 655-671.
-Kamenetsky, V.S., Elburg, M., Arculus, R. and Thomas, R., 2006. Magmatic origin of low-Ca olivine in subduction-related magmas: Co-existence of contrasting magmas: Chemical Geology, v. 233, p. 346-357.
-Kepezhinskas, P.K., Taylor, R. and Tanaka., 1995. Na metasomatism in the island-arc mantle by slab melt-peridotite interaction: Evidence from mantle xenoliths in the North Kamchatka Arc: Journal of Petrology, v. 36, p. 1505-1527.
-Kohansal, R., Ghorbani, M., Pourmafi, S.M. and Omrani, J., 2016. Petrology and petrogenesis of pillow lavas of Forumad area, Northeast Iran: Geosciences, v. 26, p. 147-158.
-Kornprobst, J., Ohnenstetter, D. and Ohnenstetter, M., 1981. Na and Cr contents in clinopyroxenes from peridotites: a possible discriminant between “sub-continental” and “sub-oceanic” mantle: Earth and Planetary Science Letters, v. 53, p. 241-254.
-Kretz, R., 1983. Symbols for rock-forming mineral: American Mineralogist, v. 68, p. 227-279.
-Kurzawa, T., Bröcker, M., Rad, G.F., Berndt, J. and Lisker, F., 2017. Cretaceous high-pressure metamorphism and low pressure overprint in the Sistan Suture Zone, eastern Iran: Additional temperature estimates for eclogites, geological significance of U-Pb zircon ages and Rb-Sr constraints on the timing of exhumation: Journal of Asian Earth Sciences, v. 147, p. 332-344.
-Laouar, R., Satouh, A., Salmi-Laouar, S., Abdallah, N., Cottin, J.Y., Bruguier, O. and Fallick, A.E., 2017. Petrological, geochemical and isotopic characteristics of the Collo ultramafic rocks (NE Algeria): Journal of African Earth Sciences, v. 125, p. 59-72.
-Lian, D., Yang, J., Robinson, P.T., Liu, F., Xiong, F., Zhang, L. and Wu, W., 2016. Tectonic evolution of the western Yarlung Zangbo Ophiolitic Belt, Tibet: Implications from the petrology, mineralogy, and geochemistry of the peridotites: Journal of Geology, v. 124, p. 353-376.
-Liu, C.Z., Zhang, C., Xu, Y., Wang, J.G., Chen, Y., Guo, S. and Sein, K., 2016. Petrology and geochemistry of mantle peridotites from the Kalaymyo and Myitkyina ophiolites (Myanmar): Implications for tectonic settings: Lithos, v. 264, p. 495-508.
-Malvoisin, B., 2015. Mass transfer in the oceanic lithosphere: Serpentinization is not isochemical: Earth and Planetary Science Letters, v. 430, p. 75-85.
-Maurel, C. and Maurel, P., 1982. Étude expérimentale de la distribution de l’aluminium entre bain silicaté basique et spinelle chromifère. Implications pétrogénétiques: teneur en chrome des spinelles: Bull. Minéral, v. 105, p. 197-202.
-McDonough, W. and Frey, F., 1989. Rare earth elements in upper mantle rocks: Reviews in Mineralogy and Geochemistry, v. 21, p. 100-145.
-Mével, C., 2003. Serpentinization of abyssal peridotites at mid-ocean ridges: Geoscience v. 335, p. 825-852.
-Moghadam, H.S. and Stern, R.J., 2015. Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia:(II) Mesozoic ophiolites: Journal of Asian Earth Sciences, v. 100, p. 31-59.
-Mohammadi, A., Burg, J.P., Bouilhol, P. and Ruh, J., 2016. U–Pb geochronology and geochemistry of Zahedan and Shah Kuh plutons, southeast Iran: Implication for closure of the South Sistan suture zone: Lithos, v. 248, p. 293-308.
-Moragues-Quiroga, C., Juilleret, J., Gourdol, L., Pelt, E., Perrone, T., Aubert, A. and  Stille, P., 2017. Genesis and evolution of regoliths: Evidence from trace and major elements and Sr-Nd-Pb-U isotopes: Catena, v. 149,  p. 185-189.
-Naseri Esfandagheh, A., Biabangard, H. and Bagheri, S., 2016. Petrography abd geochemistry of the metabasites and metaperidotites of the Deh-Salm and Galugah metamorphic complexes, East of the Lut Block: Scientific Quarterly Journal, v. 25, p. 363-374.
-Nasir, S., Al Sayigh, A.R., Al Harthy, A., Al-Khirbash, S., Al-Jaaidi, O., Musllam, A. and Al-Bu'saidi, S., 2007. Mineralogical and geochemical characterization of listwaenite from the Semail Ophiolite, Oman: Chemie der Erde-Geochemistry, v. 67, p. 213-228.
-Park, J.W., Campbell, I.H. and Eggins, S.M., 2012. Enrichment of Rh, Ru, Ir and Os in Cr spinels from oxidized magmas: Evidence from the Ambae volcano, Vanuatu: Geochimica et Cosmochimica Acta, v. 78, p. 28-50.
-Poosti, M., Mohammadi poortaziani, R., Hajhasani, H. and Mortazavi Ravari, M., 2017. Cr-Spinel mineral chemistry and tectonic setting of Lerdgarme-Paein peridotites in the east of Hajiabad, SE Iran: Scientific Quarterly Geosciences, v. 26, p. 281-296.
-Prichard, H.M., 1979. A Petrographic Study of the Process of Serpentinization in Ophiolites and the Ocean Crust: Contributions to Mineralogy and Petrology, v. 68, p. 231-241.
-Putirka, K., 2008. Thermometers and Barometers for Volcanic Systems: Reviews in Mineralogy and Geochemistry, v. 69, p. 61-120.
-Qiu, T. and Zhu, Y., 2015. Geology and geochemistry of listwaenite-related gold mineralization in the Sayi gold deposit, Xinjiang, NW China: Ore Geology Reviews, v. 70, p. 61-79.
-Rahimi Nejad, Z., Zarrinkoub, M. and Mohammadi, S.S., 2017. Petrography, mineral chemistry and genesis of peridotite in the Ratouk ophiolitic melange (East of Iran): Iranian Journal of Crystallography and Mineralogy, v. 25, p. 567-580.
-Rajabzadeh, M.A. and Al Sadi, F., 2016. Sulfide mineralization in ultramafic rocks of the Faryab ophiolite complex, southern Kerman: Journal of Economic Geology, v. 7, p. 259-276.
-Rampone, E., Hofmann, A., Piccardo, G., Vannucci, R., Bottazzi, P. and Ottolini, L., 1995. Petrology, mineral and isotope geochemistry of the External Liguride peridotites (Northern Apennines, Italy): Journal of Petrology, v. 36, p. 81-105.
-Saccani, E., Delavari, M., Beccaluva, L. and Amini, S., 2010. Petrological and geochemical constraints on the origin of the Nehbandan ophiolitic complex (eastern Iran): Implication for the evolution of the Sistan Ocean: Lithos, v. 117, p. 209-228.
-Senda, R., Shimizu, K. and Suzuki, K., 2016. Ancient depleted mantle as a source of boninites in the Izu-Bonin-Mariana arc: Evidence from Os isotopes in Cr-spinel and magnetite: Chemical Geology, v. 439, p. 110-119.
-Shervais, J.W., 2001. Birth, death, and resurrection: The life cycle of suprasubduction zone ophiolites: Geochemistry, Geophysics, Geosystems, v. 2, p. 1-11.
-Shirdashtzadeh, N., Torabi, G. and Samadi, R., 2017. Petrography and mineral chemistry of metamorphosed mantle peridotites of Nain Ophiolite (Central Iran): Journal of Economic Geology, v. 9, p.  57-72.
-Sun, S. S. and McDonough, W.S., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes: Geological Society, London, Special Publications, v. 42, p. 313-345.
-Tirrul, R., Bell, I., Griffis, R. and Camp, V., 1983. The Sistan suture zone of eastern Iran: Geological Society of America Bulletin, v. 94, p. 134-150.
-Workman, R.K. and Hart, S.R., 2005. Major and trace element composition of the depleted MORB mantle (DMM): Earth and Planetary Science Letters, v. 231, p. 53-72.
-Xu, Z., Han, B.F., Ren, R., Zhou, Y.Z., Zhang, L., Chen, J.F. and Liu, D.Y., 2012. Ultramafic–mafic mélange, island arc and post-collisional intrusions in the Mayile Mountain, West Junggar, China: Implications for Paleozoic intra-oceanic subduction–accretion process: Lithos, v. 132, p. 141-161.
-Yazdani, M., Jahangiri, A. and Moazen, M., 2015. Investigations on olivine and spinel mineral chemistry and tectonic setting of peridotites from north west Piranshahr ophiolite, NW Iran: Iranian Journal of Crystallography and Mineralogy, v. 22, p. 557-570.
-Zarei Sahamieh, R., Tabakh Shabani, A.A., Shahrokhi, W. and Barak, N., 2013. Geochemistry and mineralogy of Shahabad Gabroui massif, northwest of Nurabad, Lorestan province: Journal of Economic Geology, v. 1, p. 291 305.
-Zarrinkoub, M.H., Pang, K.N., Chung, S.L., Khatib, M.M., Mohammadi, S.S., Chiu, H.Y. and Lee, H.Y., 2012. Zircon U–Pb age and geochemical constraints on the origin of the Birjand ophiolite, Sistan suture zone, eastern Iran: Lithos, v. 154, p. 392-405.
-Zhou, M.F. and Robinson, P.T., 1997. Origin and tectonic environment of podiform chromite deposits: Economic Geology, v. 92, p. 259-262.