اثر سازه‌های عرضی (پل) بر روی مورفولوژی رودخانه (مطالعه موردی: روستای جوربند، چمستان، مازندران)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

2 دانشیار گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی

10.52547/esrj.13.1.150

چکیده

بررسی نقش انسان در تغییرات محیطی همواره یکی از موضوعات مهم مطالعات محیطی بوده است. جاده به عنوان یکی از مظاهر دخالت انسان در محیط و به خصوص در سیستم­های رودخانه­ای، سازه­ای ناگزیر جهت حمل و نقل و ارتباطات بشری است. اثرات پل بر سیستم رودخانه از جنبه­های مختلف (مورفومتریک، ژئومورفولوژی، هیدرولوژی و...) مورد توجه است. در بررسی اثر پل در روستای جوربند (واقع در حوضه واز، استان مازندران شهرستان چمستان) جهت دستیابی به داده­های دقیق از روش فتوگرامتری برد کوتاه با استفاده از پهپاد استفاده شد. پس از تهیه لایه رقومی ارتفاعی و نقشه ارتوفتوی محدوده، بررسی و مقایسه ضریب تغییرات در پارامترهای مختلف (پروفیل طولی، مقطع عرضی، بیشترین عمق، میانگین عمق مقطع، عرض کانال، نسبت عرض به عمق، سرعت جریان، قدرت جریان، عدد فرود، تنش برشی، شاخص سینوسیته، شاخص تقارن و شاخص بریس) انجام شد. نتایج نشان داد که تمام پارامترها در بالادست و پایین­دست پل با هم تفاوت دارند این درحالی­ست که از نظر محیطی شرایط بالادست و پایین­دست در وضعیت یکسانی از نظر کاربری، زمین شناسی و هیدرولوژی قرار دارند. ضریب تغییرات پارامترهای مختلف در بالادست برابر با 79/36 درصد و در پایین­دست برابر با 42/43 درصد است. پارامتر شیب، تنش برشی و قدرت رود در بالادست و پایین­دست پل بیشترین تغییرات را نشان می­دهد. پژوهش فوق نشان داد که ساخت سازه­ای مانند پل در مسیر جریان رود سبب تغییرات عمده در محیط رودخانه­ای می­شود که برآورد میزان این تغییرات می­تواند گام مؤثری در امر مدیریت اکوسیستم رودخانه و سازه­های انسانی باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of cross construction (bridge) on river morphology (case study, Jurband village, Chamestan, Mazandaran)

نویسندگان [English]

  • Afsaneh Kheiri 1
  • Mohammad Mahdi Hosseinzadeh 2
  • Hasan Sadugh-vanini 1
1 Department of Physical Geography, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
2 Associate Professor, Faculty of Earth Sciences, Shahid Beheshti University, Tehran
چکیده [English]

Introduction
Humans alter river systems directly and indirectly. Construction of bridge and culvert is one of the anthropogenic interventions which take place. Road-stream crossing (RSC) is essential to be installed on the river lines for roadway transportation, while incorrect and structurally poor RSCs often negatively influence the geomorphology and ecology of river systems. Culvert and bridges can increase stream flow velocity, shear stress, turbulence of flow, degradation and aggradation, development of deep scours, channel braiding and downstream bank erosion. Jones et al., 2000; Wemple et al., 2001 & Blanton and Marcus, 2009, previously worked on the impact of roads on fluvial geomorphology with changing floodplain’s form and function. The difficult issue in survey study is gathering, up-to-date and easy to use data with high accuracy, therefore short-rang photogrammetry was used in this research.
Method and Materials
In this investigation, the effect of bridge on river system was analyzed in Jurband village in Mazandaran province. Documentary references, remote sensing (UAV) and survey are 3 methods used. Longitudinal and cross-section profiles were drawn on digital elevation model. The model was generated from UAV with high resolution (pixel size: 4.6 cm). Longitudinal profile was obtained from survey along 400m from upstream to downstream and 8 cross-section sites were selected for detailed study in upstream (U) and downstream (D) of river channel (on bridge section, 25m, 50m, 100m, 200m).
Results
The channel slope is smooth rend. After bridge cross section, the channel bed has collapsed at a rate of 8m gradually. In investigated reaches, all of cross sections had no change in width index except in 25U section. According to coefficient of variation index, parameters were 18.47% upstream and 2.8% in downstream. Maximum depth was in bridge cross section (1.40m) and in 200D (1.18m). The minimum amount of depth maximum and mean was in 25D (respectively 0.74m and 0.37m). There was a significant difference in W/d ratio in upstream to downstream, about 22m decrease in downstream. Cross-section area varies from 25D (65.7m) to bridge section (79.26m). The significant difference of bank-full area was 42% in all selected reaches. According to information, amount of flow velocity altered from 38.1 m/s in bridge cross-section to 18.4 m/s in 25D cross-section. Also, the maximum and minimum rate of Froude number and power stream were obtained at 25D and bridge cross-section respectively. Sinuosity index (SI) of cross-sections were equal with 1 except in 200U (1.30) , 50D (1.20) and 200D (1.10).
Discussion  
Based on The principle of flow continuity, it can be stated that the amount of discharge was the same in reaches and variation in channel parameters is due to bridge construction. Because of scour in upstream over the time, altitude differences has changed in river bed and bank side between 3-4 m. After bridge construction, degradation in upstream has stopped due to local bed level foundation but sedimentation and widening of channel has increased about 2-3 meter lower than bank side. Nevertheless, degradation and scouring has increased in downstream and bed collapsing has occurred up to 8m after bridge section.

کلیدواژه‌ها [English]

  • Bridge
  • Anthropogenic changes
  • river
  • Jurband
  • short-range photogrammetry
-جلالی­راد، ر.، 1382. پهنه­بندی سیل در بخشی از حوزه آبخیز شهری تهران با استفاده از GIS، پایان­نامه کارشناسی ارشد، رشته آبخیزداری، دانشگاه تربیت مدرس.
-حسین­زاده، م. و اسماعیلی، ر.، 1394. ژئومورفولوژی رودخانه­ای، مفاهیم، اشکال و فرایندها، انتشارات دانشگاه شهید بهشتی، 338 ص.
 
 
 
-Abbe, T.B. and Montgomery, D.R., 2003. Patterns and processes of wood debris accumulation in the Queets river basin, Washington, Geomorphology, v. 51, p. 81-107. 10.1016/S0169-555X(02)00326-4.
-Ansari, S.A., Kothyari, U.C. and Ranga Raju, K.G., 2002. Influence of cohesion on scour around bridge piers. Journal of Hydraulic Research. v. 40, p. 717-729.
-Christelle, A., Mireille, P. and Clasude, V., 2004. Recent morphological channel changes in deltaic environment. The case of the Rhone River, Geomorphology, v. 57(3), p. 385-402.
-Bateni, S.M., Borghei, S.M. and Jeng, D.S., 2007. Neural network and neuro-fuzzy assessments for scour depth around bridge piers. Engineering Applications of Artificial Intelligence, v. 20(3), p. 401-414.
-Bertoldi, W., 2004. River Bifurcations. Thesis (PhD), University of Trento, Italy
Biswas, M., & Banerjee, Puja. 2018, Bridge construction and river channel morphology- A comprehensive study of flower behavior and sediment size alteration of the river Chel, India, Arabian Journal of Geosciences, v. 11, 467 p. https://doi.org/10.1007/s12517-018-3789-7.
-Blanton, P. and Marcus, W.A., 2009. Railroads, roads and lateral disconnection in the river landscapes of the continental United State. Geomorphology, v. 122, p. 212-227.
-Bouska, W.W., Keane, T. and Paukert, C.P., 2010. The effects of road crossings on prairie stream habitat and function. Journal of Freshwater Ecology, v. 25(4), p. 499-506.
-Carbonneau, P.E. and Bergeron, N., 2005. Automated grain size measurements from airborne remote sensing for long profile measurements of fluvial grain sizes. Water Resources Research, v. 41, p. 114-126.
-Carrivick, J.L. and Smith, M., 2019. Fluvial and aquatic applications of structure from motion photogrammetry and unmanned aerial vehicle/drone technology, WIREs Water. DOI: 10.1002/wat2.1328.
-Carrivick, J.L., Smith, M.W., Quincey, D.J. and Carver, S.J., 2013. Developments in budget remote sensing for the geosciences, Geology Today, v. 29(4), p. 138-143.
-Chou, T., Yeh, M., Chen, Y. and Chen, Y., 2010. Disaster monitoring and management by the unmanned aerial vehicle technology, International Society for Photogrammetry and Remote Sensing (Vienna, Austria).
-Crutzen, P.J., 2002. Geology of mankind, Nature, v. 415, https://doi.org/10.1038/415023a.
-Depnath, K. and Chaudhuri, S., 2010. Laboratory experimental on local scour around cylinder for clay – sand mixed beds. Journal of Geology, v. 111, p. 51-61.
-Dimitriou, E. and Stavroulaki, E., 2018. Assessment of riverine morphology and habitat regime using unmanned aerial vehicles in a Mediterranean environment. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-1929-3.
-Firat, M. and Gungor, M., 2009. Generalized regression neural networks and feed forward neural networks for prediction of scour depth around bridge piers. Advances in Engineering Software, v. 40, p. 731-737
-Frizzell, R.L., Zevenbergen, L.W. and Navarro, R., 2004. Stream Channel restoration at Bridge Sites. Trimble Inc. 6445 Powers Ferry road, Suite 100, Atlanta, GA 30339, p. 1-9.
-Fujita, I., Notoya, Y. and Shimono, M., 2015. Development of UAVbased river surface velocity measurements by STIV based on ighaccurate image stabilization technique. E-proceedings of the 36th IAHR World Congress (The Hague, the Netherlands).
-Fráter, T., Juzsakova, T., Lauer, J., Dióssy, L. and Rédey, A., 2015. Unmanned aerial vehicles in environmental monitoring—An efficient way for remote sensing. Journal of Environmental Science and Engineering A, v. 4, p. 85-91.
-Grade, R.J., and Kothyari, U.C., 1998. Scour around Bridge Piers. PINSA, v. 64(4), p. 569-580.
-Gregory, K.J. and Brookes, A., 1983. Hydrogeomorphology Downstream from Bridges. Applied Geography, v. 3, p. 145-159.
-Huggett, R.J., 2007. Fundamentals of geomorphology. 2nd ed. New York: Routledge Fundamentals of Physical Geography.
-Kim, S.S. and Kim, T.H. and Sim, J.S., 2019. application assessment of UAV mapping for disaster damage investigation in Korea, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W8, https://doi.org/10.5194/isprs-archives-XLII-3-W8-209-2019, 2019.
-Knighton, A.D., 1981. Asymmetry of river channel cross-section: part 1, Quantitative indices. Earth Surface Processes and Landforms, v. 6, p. 581-588.
-Kothyari, U.C. and Ranga─Raju, K.G., 2000. Scour around spur dikes and bridge abutments. JOURNAL OF HYDRAULIC RESEARCH, v. 39(4), p. 367-374.
-Jones, J.A., Swanson, F.J., Wemple, B.C. and Synder, K.U., 2000. Road effect on hydrology, geomorphology, and disturbance patches in stream network. Conservation Biology, v. 14, p. 76-85.
-Knighton, A.D., 1984. Fluvial Forms and Processes. Edward Arnold, Sheffield, North America.
-Lee, T.L., Jeng, D.S., Zhang, G.H. and Hong, J.H., 2007. Neural network modeling for estimation of scour depth around bridge piers. Hydrodynamics, v. 19(3), p. 378-386.
-Lee, I., Kang, J. and Seo, G., 2013. Applicability analysis of ultralight UAV for flooding site survey in South Korea. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W1, ISPRS Hannover Workshop 2013, 21-24 May 2013, Hannover, Germany.
-Leopold, L.B., Wolman, M.G. and Miller, J.P., 1964. Fluvial processes in geomorphology. New York: Dover.
-McKenney, R., Jacobson, R.B. and Wetheimer, R.C., 1995. Woody Vegetation and Channel Morphogenesis in Low Gradient Gravel-Bed Streams in the Ozark Plateaus, Missouri and Arkansas. Geomorphology, v. 13, p. 175-198.
-Merwe, D.V. and Price, K.P., 2015. Harmful algal bloom characterization at ultra-high spatial and temporal resolution using small unmanned aircraft systems. Toxins - Open Access Toxinology Journal, v. 7(4), p. 1065-1078, DOI: 10.3390/toxins7041065.
-Merril, M.A. and Gregory, J., 2007. The effects of culverts and bridges on stream geomorphology. In: J.F. Levine, et al. eds. A comparison of the impacts of culverts versus bridges on stream habitat and aquatic fauna, Technical Report (FHWA/NC/2006-15), North Carolina State University, Department of Forestry and Environmental Resources, Raleigh, p. 15-45.
-Meybeck, M., 2003. Global analysis of river systems: From Earth system controls to Anthropocene syndromes. Philosophical Transactions of the Royal Society, Biological Sciences, v. 358, p. 1935-1955.
-Milne, J.A., 1983. Variation in cross-sectional asymmetry of coarse bedload river channels. Earth Surface Processes and Landforms, v. 8, p. 503-511.
-Mueller, D.S. and Wagner, C.R., 2005. Field observations and evaluations of streambed scour at bridges. Rep. No. FHWA-RD-03-052, Office of Engineering Research and Development, Federal Highway Administration, 134 p.
-Najafzadeh, M., Etemad-Shahidi, A. and Lim, S.Y., 2016. Scour prediction in long contractions using ANFIS and SVM. Ocean engineering, v. 111, p. 128-135.
-Niedzielski, T., 2018. Application of unmanned aerial vehicles in Geosciences: Introduction, Pure and Applied Geophysics, Pure Appl. Geophys. https://doi.org/10.1007/s00024-018-1992-9.
-Nilsson, C., Liermann, C.R. and Dyneslus, M., 2005. Fragmentation and flow regulation of the world’s large river systems, Science, v. 308, p. 404-430.
-Pal, M., Singh, N.K. and Tiwari, N.K., 2012. M5 model tree for pier scour prediction using field dataset. Civil Engineering, v. 16, p. 1079-1084.
-Rayburg, S.C. and Neave, M., 2008. Assessing morphological complexity and diversity in river systems using three-dimensional asymmetry indices for bed elements, bedforms and bar units. River Research and Applications, v. 24, 1343-1361. doi:10.1002/rra.1096
-Resh, V.H., 2005. Stream crossings and the conservation of diadromous invertebrates in South Pacific island streams. Aquatic Conservation: Marine and Freshwater Ecosystems, v. 15, p. 313-317.
-Richardson, E.V. and Richardson, J.R., 1999. Determining Contraction Scour. In: E.V. Richardson and P.F. Lagasse, (Ed.) Stream Stability and Scour at Highway Bridges, American Society of Engineers, p. 483-490.
-RIEGL, 2017. sUAV-Based Surveying System for Hydrographic Applications. Riedenburgstrasse, Austria, http://www.ricopter.com.
-Rosgen, D.L., 1994. A classification of natural rivers. Catena, v. 22, p. 169-199.
-Robert, A., 2003. River Processes. Arnold, London.
-Roy, S. and Sahu, A.S., 2017. Potential interaction between transport and stream networks over the lowland rivers in Eastern India. Journal of Environmental Management, v. 197, p. 316-330.
-Roy, S., 2013. The effect of road crossing on river morphology and riverine aquatic life: a case study in Kunur River Basin, West Bengal. Ethiopian Journal of Environmental Studies and Management, 6 (Supplement), p. 435-445. doi:10.4314/ejesm.v6i6.14S
-Schumm, S.A., Mosley, M.P. and Weaver, W.E., 1987. Experimental fluvial geomorphology. Chichester, NY: John Wiley & Sons
-Sing, S., 1983. Flood Hazard and environmental degradation: a case study of the Gomti River. In: L.R. Sing, (Ed.) Environmental Management, Allahabad Geographical Society, Department of Geography, Allahabad University, p. 271-286.
-Su, T. and Chou, H., 2015. Application of multispectral sensors carried on Unmanned Aerial Vehicle (UAV) to trophic state mapping of small reservoirs: A case study of tain-pu reservoir in kinmen, Taiwan, Remote Sensing, p. 10078-10097, DOI: 10.3390/ rs70810078.
-Surian, N. and Rinaldi, M., 2003. Morphological response to river engineering and management in alluvial channels in Italy, Geomorphology, v. 50(4), p. 307-326.
-Surian, N., 2006. Effects of human impacts on braided river morphology: Examples from northern Italy. In Sambrook Smith, G.H., Best, J.L., Bristow, C.S., and Petts, G.E., editors, Braided Rivers. Oxford, Blackwell, p. 327-338.
-Schumm, S.A., 1977. The Fluvial System. New York, WileyInterscience.
-Vázquez-Tarrío, D., Borgniet, L., Liébault, F. and Recking, A., 2017. Using UAS optical imagery and SfM photogrammetry to characterize the surface grain size of gravel bars in a braided river (Vénéon River, French Alps), Geomorphology, p. 94-105. http://dx.doi.org/10.1016/j.geomorph.2017.01.039.
-Walter, R.C. and Merritts, D.J., 2008. Natural streams and the legacy of water-powered mills. Science, v. 319, p. 299-304.
-Wang, J., Edwards, P.J. and Goff, W.A., 2010. Assessing Changes to In-Stream Turbidity Following Construction of a Forest Road in West Virginia. TMDL 2010 Watershed Management to Improve Water Quality CD-ROM Proceedings, ASABE Publication Number 711P0710cd.
-Wemple, B.C., Swanson, F.J. and Jones, J.A., 2001. Forest roads and geomorphic process interactions, Cascade range, Oregon. Earth Surface Processes and Landforms, v. 26, p. 191-204.
-Wheeler, P.A., Angermeier, P.L. and Rosenberger, A.E. 2005, Impact of New Highways and Subsequent Landscape Urbanization on Stream Habitat and Biota. Reviews in Fisheries Science, v. 13(3), p.141-164.