ترموبارومتری آمفیبولیت‌های سیرجان براساس محتوای Zr در کانی اسفن(تیتانیت) و روتیل

نوع مقاله : علمی -پژوهشی

نویسندگان

دانشگاه شهید بهشتی

چکیده

بخشی از کمپلکس دگرگونی جنوب سیرجان را توده‌های آمفیبولیتی تشکیل داده‌است. این توده‌ها بصورت همیافت با گارنت مسکوویت‌ شیست‌ها و هورنبلند شیست‌ها در منطقه دیده می‌شوند. ترکیب سنگ شناسی آن‌ها شامل آمفیبول از نوع مگنزیو‌ هورنبلند تا چرماکیت، پلاژیوکلاز سدیک (Ab70)، کوارتز  و کانی‌های فرعی اپیدوت،  بیوتیت، اسفن و روتیل است. در این تحقیق با استفاده از محتوای Ti و Zr در کانی‌های اسفن و روتیل شرایط  فشار و حرارت تشکیل این سنگ‌ها مورد بررسی قرار گرفته‌است. نتایج آنالیز نقطه­ای انجام شده برروی کانی­های اسفن و روتیل در نمونه‌های انتخاب شده، بطور متوسط  Zr= 317.57 ppm, TiO2= 37.23 wt% برای کانی اسفن و Zr= 439.57 ppm, TiO2= 98.48 wt%  برای کانی روتیل است. ترموبارومتری اسفن و روتیل نشان می‌دهد که محدوده فشار- دمایی این آمفیبولیت‌ها براساس کانی اسفن T= 608-691ºC  و براساس کانی روتیل T=572-723ºC، P=7.6- 9 Kbar است. براساس این نتایج و تطابق آن‌ها با محدوده رخساره‌های مختلف دگرگونی می‌توان گفت این آمفیبولیت‌ها در طی دگرگونی ناحیه‌ای و شرایط رخساره آمفیبولیت درجه بالا تشکیل شده‌اند. AbstractPart of the metamorphic complex of south of Sirjan consist of amphibolite units. In this region, amphibolites are found with garnet muscovite schist and hornblende schist. Their lithological compositions include amphibole with magnesio-hornblende and tschermakite composition, sodic plagioclase (Ab70), epidote, quartz and biotite, with sphene and rutile as minor minerals. In this study, temperature and pressure conditions of amphibolite are evaluated by using Ti and Zr content in the rutile and sphene, minerals. The electron microprobe analysis of sphene and rutile minerals on selected samples show, the average of Zr= 317.57 ppm, TiO2= 37.23 wt% in sphene and Zr = 439.57 ppm, TiO2 = 98.48 wt% in rutile. Thermobarometry of sphene and rutile show that the range of temperature and pressure of the amphibolites based on sphene is T = 608-691ºC and based on rutile is T = 572-723ºC, P = 7.6- 9 Kbar. Based on these results and compatibility with the range of different metamorphic facieses, amphibolites were formed during regional metamorphism in high grade amphibolite facies. Keywords: Amphibolite, Thermobarometry, Sphene, Rutile, Sirjan metamorphic complex.

کلیدواژه‌ها


عنوان مقاله [English]

Thermobarometry of Sirjan’s amphibolite based on Zr content in Sphene (Titanite) and Rutile

چکیده [English]

Part of the metamorphic complex of south of Sirjan has made by amphibolite units. In this region, amphibolites are found with garnet muscovite schist and hornblende schist. Their lithological compositions include amphibole with magnesio-hornblende and tschermakite composition, sodic plagioclase (Ab70), epidote, quartz and biotite, with sphene and rutile as minor minerals. In this study, temperature and pressure conditions of amphibolite are evaluated by using Ti and Zr content in the rutile and sphene, minerals.
The electron microprobe analysis of sphene and rutile minerals on selected samples show, the average of Zr= 317.57 ppm, TiO2= 37.23 wt% in sphene and Zr = 439.57 ppm, TiO2 = 98.48 wt% in rutile. Thermobarometry of sphene and rutile based on Watson, Ferry and Tomkins calibrations show that the range of temperature and pressure of the amphibolites based on sphene is T = 608-691ºC and based on rutile is T = 572-723ºC, P = 7.6- 9 Kbar. Based on these results and compatibility with the range of different metamorphic facieses, amphibolites were formed during regional metamorphism in high grade amphibolite facies.

کلیدواژه‌ها [English]

  • Amphibolite
  • Thermobarometry
  • Sphene
  • Rutile
  • Gole Gohar metamorphic complex
  1. -آقا نباتی، ع. و.، 1383. زمین شناسی ایران، چاپ اول، انتشارات سازمان زمین‌شناسی ایران، تهران، 606 ص.
  2. -Asghary, G., Mirnejad, H. and Ghalamghash, J., 2012. Mineralogy and thermo-barometry of amphibolites in Gol- Gohar iron ore deposit Sirjan, Kerman: Journal of New findings in applied geology (In Persian), v.11, P. 94-104.
  3. -Angiolini, L., Gaetani, M., Muttoni, G., Stephenson, M. and Zanchi, A., 2007. Tethyan oceanic currents and climate gradients 300 m.y. ago: Journal of Geology, v.35, p.1071-1074.
  4. -Bayati- Rad, Y., Mirnejad, H. and Ghalamghash, J., 2013. Distribution and Abundance of Rare Earth Elements in Magnetite from Gol-Gohar Iron Ore Deposit, Sirjan, Kerman: Journal of Earth Science (In Persian), v.90, p. 217-224.
  5. -Cosca, M. A., Essene, E. J. and Bowman, J. R., 1991. Complete chemical analyses of metamorphic hornblendes: Implications for normalizations, calculated H2O activities and Thermobarometry: Contribution to mineralogy and petrology, v. 108, p. 472-484.
  6. -Deer, W. A., Howie, R. A. and Zussman, J., 1962. Rock- forming minerals, 3rd Volume: Longman- London, 528 p.
  7. -Ferry, J.M. and Watson, E.B., 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers: Contrib Mineral Petrol, v. 154, p. 429-437.
  8. -Foster, M.D., 1960. Interpretation of the composition of tri octahedral micas: US Geolofical Survey Prof, v. 354, p. 1-49.
  9. -Frost, R., Chamberlain, k. R. and Schumacher, j. C., 2002. Sphene (Titanite): phase relations and role as a geochronometer: Chemical Geology, v. 172, p. 131-148.
  10. -Harlov, D., Tropper, P., Sefert, W., Nijland, T. and Forster, H. J., 2006. Formation of Al-rich titanite (CaTiSiO4O–CaAlSiO4OH) reaction rims on ilmenite in metamorphic rocks as a function of fH2O and fO2: Journal of Lithos, v. 88, p.72-84.
  11. -Hawthorne, F.C. and Oberti, R., 2006. On the classifi cation of amphiboles: Can Mineral, v. 44, p. 1-21.
  12. -Laird, J., 1980. Phase equilibria in mafic schist from Vermont: Journal of Petrology, v.21, p. 1-37.
  13. -Leake, B.E., 1978. Nomenclature of amphiboles: Can Mineral, v. 16, p. 501-520.
  14. -Leake, B.E., Woollwy, A. R. and Arps, C. E., 1997. Nomenclature of amphiboles: Report of thesubcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names: Can Mineral, v. 35, p. 219-246.
  15. -Leake, B., Woollwy, A. R. and Arps, C. E., 2003. Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature: Can Mineral, v.41, p. 1355-1370.
  16. -Leslie, H., Hayden, E., Watson, B. and Wark, D. A., 2008. A thermobarometer for sphene (Titanite): Contrib Mineral Petrol, v. 155, p. 529-540.
  17. -Miller, C., Zanetti, A. and Thöni, M., 2007. Eclogitisation of gabbroic rocks: redistribution of trace elements and Zr in rutile thermometry in an Eo-Alpine subduction zone (Eastern Alps): Chemical Geology, v. 239, p. 96–123.
  18. -Mogessie, A., Tessadri, R. and Veltman, C.B., 1990. EMPAMPH a hyper card program to determine the name of an amphibole from electron microprobe analysis according to the International Mineralogical Association scheme: Computers & Geosciences, v.16 (3), p. 309–330.
  19. -Moazzen, M., 2004. Chlorite- Chloritoid- Garnet equlibria and geothermometry in the Sanadaj-Sirjan metamorphic belt, southern Iran: Iranian Journal of Science & Technology, Trans. A, v. 28 (A1), p. 65-78.
  20. -Nachit, H., 1986. Contribution à l'etude analytique et experimentale des biotites des granitoïdes, Applications typologuiques: Tese de Doutorado, Universite de Bretagne Occidentale, Brest, 238 p.
  21. -Nachite, H., Ibhi, A., Abia, E.H. and Ben Ohoud, M., 2005. Discrimination between Primary magmatic biotites, re equilibrated biotites and neoformed biotites: C. R. Geoscience, v. 337, p. 1415-1420.
  22. -Orang, K. and Mohajjel, M., 2013. Poly- deformation and fabrics in the Shurow metamorphic complex, west of Sirjan: Iranian Journal of Geology (In Persian), v. 7(27), p. 41-53.
  23. -Poli, S. and Ulmer, p., 2001. Norm13: Geology software.
  24. -Peighambari, S., Moradian, A. and Ahmadipour, H., 2003. A new model for the formation of actinolite rich layers in Khaju complex in the south-east of Sirjan (Kerman): The 22th Symposium on the Geoscience, Tehran, Iran.
  25. -Rock, N.M.S. and Leake, B.E., 1984. The International Mineralogical Association amphibole nomenclature scheme: computerization and its consquences: Mineralogical Magazine, v. 48, p. 211-277.
  26. -Sabzehei, M., Rowshan Ravan, J., Eshraghi, S.A. and Navazi, M., 1993. Geological map of Gole Gohar, Neyriz, Sirjan and Khabr 1:100000. Geological Survey of Iran, Tehran.
  27. -Schmid, R., Fettes, D., Harte, B., Davis, E. and Desmons, J., 2007. A systematic nomenclature for metamorphic rocks, 1. How to name a metamorphic rock: SCMR website, 12 p.
  28. -Spear, F.S., Wark, D.A., Cheney, J.T., Schumacher, J.C. and Watson, E.B., 2006. Zr-in-rutile thermometry in blueschists from Sifnos, Greece: Contributions to Mineralogy and Petrology, v. 152, p. 375–385.
  29. -Thompson, J., Larid, J. and Thompson, A.B., 1982. Reaction in amphibolites, greenschist and blueschist: Journal of Petrology, v. 23, p. 1-27.
  30. -Tomkins, H.S., Powell, R. and Ellis, D.J., 2007. The pressure dependence of the zirconium-in-rutile thermometer: Journal of Metamorphic Geology, v. 25, p. 703–713.
  31. -Troppe, P. and Manning, C., 2008. The current status of titanite–rutile thermobarometry in ultrahigh-pressure metamorphic rocks: The in! uence of titanite activity models on phase equilibrium calculations: Chemical Geology, v. 254, p. 123-132.
  32. -Watson, E.B., Wark, D. A. and Thomas, J. B., 2006. Crystallization thermometers for zircon and rutile: Contrib Mineral Petrol, v. 151, p. 413–433.
  33. -Zack, T. and Manning, C., 2004. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer Contributions to Mineralogy and Petrology, v. 148, p. 471–48.
  34. -Zack, T. and Luvizottow, G.L., 2006. Application of rutile thermometry to eclogites, Mineral: Petrol, v. 88, p. 69–85.
  35. -Zhang, G.B., David, J.E., Andrew, G.C., Zhang, L.F. and Song, S.G., 2010. Zr-in-rutile thermometry in HP/UHP eclogites fromWestern China: Contributions to Mineralogy and Petrology, v. 160, p. 427–439.
  36. -Zheng, Y.F., Zhang, L.F., Du, J.X. and Lu, Z., 2011. Zr-in-rutile thermometry of eclogite in the Dabie orogen: constraints on rutile growth during continental subduction-zone metamorphism: Journal of Asian Earth Sciences, v. 40, p. 427– 451.