ارزیابی آلودگی و ریسک اکولوژیک فلزات سنگین در خاک‌های سطحی اطراف گرانیتوئیدهای منطقه اهر- آذربایجان شرقی

نوع مقاله : علمی -پژوهشی

نویسندگان

1 کارشناس ارشد، گروه زمینشناسی محیطی، پژوهشکده علوم پایه کاربردی

2 کارشناس ارشد، کارشناس سازمان زمینشناسی و اکتشافات معدنی کشور

3 استادیار گروه زمینشناسی محیطی، پژوهشکده علوم پایه کاربردی

4 استادیار پژوهشی گروه زمینشناسی، دانشکده علوم، دانشگاه تهران

چکیده

عناصر آرسنیک، سرب، جیوه، کادمیوم، آنتیموآن، سلنیوم، مس، مولیبدن و روی جزء عناصر سمی و فلزات سنگین هستند که برای سلامت محیط زیست و انسان خطرناک می‌باشند. از طرف دیگر از دیدگاه ژئوشیمیایی جزو گروه عناصر کمیاب بوده و در نتیجه دارای پتانسیل بالایی برای تمرکز در سنگ‌های گرانیتوئیدی هستند. مطالعه حاضر جهت بررسی پتانسیل سمیت تمرکز فلزات سمی As، Cd، Cu، Hg، Mo، Pb، Sb، Se و Zn، توزیع مکانی و درجه آلودگی آنها با استفاده از مقایسه با استاندارد EPA، شاخص زمین انباشت (Igeo)، ضریب غنی­شدگی (EF)، درجه آلودگی (Cd)، شاخص بار آلودگی (PLI) و شاخص ریسک اکولوژیک (RI) انجام شد. بدین منظور نمونه‌های خاک از محدوده برداشت شد و به روش ICP-MS مورد تجزیه شیمیایی قرار گرفت. محاسبه شاخص زمین انباشت نشان داد که 50% از ایستگاه­ها آلودگی متوسط تا خیلی بالا دارند. فاکتور پتانسیل ریسک اکولوژیک فلزات مورد نظر به‌صورت As>Mo >Cd>Pb>Hg>Cu>Zn (میانگین Ei عناصر) است. شاخص بار آلودگی در 50% نمونه‌ها دارای کیفیت خوب و 40% نمونه‌ها دارای کیفیت نامطلوب هستند. خاک سطحی در محدوده مطالعاتی بر مبنای ضریب آلودگی Cf، آلودگی کم از نظر Cd و Zn، آلودگی متوسط از جهت Cu، Mo، Pb و Sb، آلودگی زیاد برای As و آلودگی خیلی زیاد به سبب Se دارد و از نظر درجه آلودگی، آلودگی متوسط تا خیلی زیاد دارد که بیش از 50% نمونه‌ها آلودگی قابل توجه نشان می‌دهند. بنابراین نتایج نشان می‌دهند که خاک سطحی متاثر از تشکیلات زمین‌شناسی به‌خصوص توده‌های نفوذی انزان، شیور و خان‌کندی و زون‌های دگرسانی ناشی از این توده‌ها می‌باشد که پتانسیل بالایی در ایجاد آلودگی در منابع آب، گیاهان و سرانجام زنجیره غذایی انسان دارد.

کلیدواژه‌ها


-احمدی کوهبنانی، م. ر.، 1393. ژئوشیمی و نحوه توزیع آرسنیک در تیپ‌های مختلف کانسنگ معدن شماره 1 گل گهر، فصلنامه پژوهشی، شماره 12، ص 34-40.
-خضری، م.، خدایی، ک.، شهسواری، ع.ا.، یوسف‌زادی، م.، هاتفی، ر. و مدبری، س.، 1388. تهیه‌ مدل ژئوشیمیایی انتقال و پهنه‌بندی خطر آلودگی‌های زیست‌محیطی ناشی از توده‌های نفوذی گرانیتوئیدی در منطقه‌ اهر. جهاد دانشگاهی، 143 ص.
-فرهنگ جغرافیایی ایران، اهر، 1376. انتشارات سازمان جغرافیایی وزارت دفاع و پشتیبانی نیروهای مسلح.
-مهرپرتو، م. و خان‌ناظر، ن.، 1378. نقشه‌ زمین‌شناسی 1:100،000 کلیبر، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
-مهرپرتو، م.، امینی‌فضل، ع. و رادفر، ج.، 1371. نقشه‌ زمین‌شناسی 1:100،000 ورزقان، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
- مهدوی، م. و امینی‌فضل، ع.، 1367. نقشه‌ زمین‌شناسی 1:100،000 اهر، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
-Abrahim, G.M.S. and Parker, R.J., 2008. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand: Environ Monit Assess, v. 136, p. 227- 238.
-Adomako, D., Nyarko, B.J.B., Dampare, S.B., Serfor- Armah, Y., Osae, S., Fianko, J.R. and Akaho, E.H., 2008. Determination of toxic elements in waters and sediments from River Subin in the Ashanti Region of Ghana: Environ Monit -Assess, v. 141, p. 165-175.
-Arribere, M.A., Ribeiro, G.S., Bubach, D.F. and Vigliano, P.H., 2006. Trace elements as fingerprint of Lake of Provenance and of species of some native and exotic fish of Northern Patagonian Lakes: Biological Trace Element Research, v. 111, p. 71–95.
-Barringer, J. L., Szabo, Z. and Barringer, T., 2003. Arsenic and metals in soils in residential, forest, orchard and industrial areas of the coastal plain, north-central New Jersey: Conference abstracts of Natural Science and Public Health, Prescription for a Better Environment.
-Burger, J., 2008. Assessment and management of risk to wildlife from cadmium: Science of The Total Environment, v. 389, p. 37–45.
-Caeiro, S., Costa, M.H., Ramos, T.B., Fernandes, F., Silveira, N., Coimbra, A., Medeiros, G. and Painho, M., 2005. Assessing heavy metal contamination in Sado estuary sediment: an index analysis approach: Ecological Indicators, v. 5, p.151–169.
-Chakraborty, R., Zaman, S., Mukhopadhyay, N., Banerjee, K. and Mitra, A., 2009. Seasonal Variation of Zn, Cu and Pb in the Estuarine Stretch of West Bengal: Indian Journal of Marine Science, v. 38(1), p. 104-109.
-Eby, G.N., 2004. Principle of Environmental Geochemistry: Thompson, 515 p.
-Einax, J.W. and Soldt, U., 1999. Geostatistical and multivariate statistical method for the assessment of polluted soils; Merits and Limitations: Chemometrics and Intelligent Laboratory Systems, v. 46, p. 79-91.
-Hakanson, L. and Janson, M., 1983. Principles of Lake Sedimentology: Springer, Berlin, 316 p.
-Hakanson, L., 1980. An ecological risk index for aquatic pollution control: a sedimentological approach: Water Research, v. 14, p. 975-1001.
-Ikem, A., Campbell, M., Nyirakabibi, I. and Garth, J., 2008. Baseline concentrations of trace elements in residential soils from southeastern Missouri: Environmental Monitoring Assessment, v. 140(1-3), p. 69-81.
-Kabata-Pendias, A., 2011. Trace Elements in Soils and Plants: CRC Press Taylor & Francis Group, 534 p.
-Krishna, A.K., Satyanarayanan, M. and Govil, P.K., 2009. Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: a case study from Patancheru, Medak District, Andhra Pradesh, India: Journal of Hazardous Materials, v. 167, p. 366–373, doi:10.1016/j.jhazmat.2008.12.131.
-Krzysztof, L., Danuta, L. and Irena, K., 2004. Metal contamination of farming soils affected by industry: Environment International, v. 30, p. 159-165.
-Luoping Zhang, X.Y., Huan Feng, Y.J., Tong Ouyang, X.Y., Rongyuan Liang, C.G. and Weiqi, C., 2007. Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China: Marine Pollution Bulletin, v. 54, p. 974–982.
-Muller, G., 1969. Index of geoaccumulation in sediments of the Rhine River: Geojournal, v. 2, p. 108–118.
-Nasrabadi, T., Nabi Bidhendi, G.R., Karbassi, A.R., Hoveidi, H., Nasrabadi, I., Pezeshk, H. and Rashidinejad, F., 2008. Influence of Sungun copper mine on groundwater quality, NW Iran: Environmental Geology, v. 58, p. 693-700, doi: 10.1007s00254.008-1543-2.
-Nriagu, J.O. and Pacyna, J.M., 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace-metals: Nature, v. 333, p. 134–139, doi:10.1038/333134a0.
-Nendza, M., 2002. Inventory of marine biotest methods for evalution of dredged material and sediments: Chemosphere, v. 48, p. 865-883.
-Pekey, H., Karaka, D. and Bakoglu, M., 2004. Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses: Marine Pollution Bulletin, v. 49, p. 809–818.
-Qishlag, A., Moore, F. and Forghani, G., 2007. Impact of untreated wastewater irrigation on soils and crops in Shiraz suburban area, SW Iran: Environmental Monitoring and Assessment, v.141, p. 257‐273.
-Rapant, S., Bodis, D., Vrana, K., Cveckova, V., Kordik, J., Krcmova, J. and Slaninka, I., 2009. Geochemical atlas of Slovakia and example of its applications to environmental problems: Environmental Geology, v. 57, p. 99-110, doi: 10.1007s00254.008-1286-0.
-Ribeiro Guevara, S., Bubach, D., Vigliano, P., Lippolt, G. and Arribere, M., 2004. Heavy metal and other trace elements in native mussel Diplodon chilensis from Northern Patagonia Lakes, Argentina: Biological Trace Element Research, v. 102, p. 245–263.
-Rodriguez Martin, J.A., Ramos-Miras, J.J., Boluda, R. and Gil, C., 2013a. Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain): Geoderma, v. 200–201, p. 180–188.
-Sabadell, J.E. and Axtmann, R.C., 1975. Heavy metal contamination from geothermal sources: Environmental Health Perspectives, v. 12, p. 1-7.
-Selinus, O., 2004. Medical geology: an emerging specialty: Terrae, v. 1(1), p. 8-15.
-Shahram, E., Akbar, H.M., Naser, J., Seyed, F.N., Seyed, M.N. and Mohammad Ali, E., 2011. Trace element level in different tissues of Rutilus frisii kutum Collected from Tajan River, Iran: Biological Trace Element Research, v. 143, p. 965–973.
-Shakeri, A., Moore, F. and Modabberi, S., 2009. Heavy Metal Contamination and Distribution in the Shiraz Industrial Complex Zone Soil, South Shiraz, Iran: World Applied Sciences Journal, v. 6(3), p. 413-425.
-Shakeri, A., Moor, F. and Razikordmahalleh, L., 2010. Distribution of soil heavy metal contamination around industrial complex zone, Shiraz, Iran: 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia.
-Seshan, B.R.R., Natesan, U. and Deepthi, K., 2010. Geochemical and statistical approach for evaluation of heavy metal pollution in core sediments in southeast coast of India, International Journal of Environmental Science, v. 7, p. 291-306.
-Sheykhi, V. and Moore, F., 2013. Evaluation of potentially toxic metals pollution in the sediments of the Kor river, southwest Iran: Environmental Monitoring and Assessment, v. 185, p. 3219–3232, doi: 10.1007/s10661-012-2785-8.
-Shi, G., Chen, Z., Bi, C., Li, Y., Teng, J., Wang, L. and Xu, S., 2010. Comprehensive assessment of toxic metals in urban and suburban street deposited sediments (SDSs) in the biggest metropolitan area of China: Environmental Pollution, v. 158, p. 694–703.
-Stopford, W. and Goldwater, L.J., 1975. Methylmercury in the environment: a review of current understanding: Environmental Health Perspectives, v. 12, p. 115-118.
-Tavakoly Sany, S.B., Saleh, A., SULAIMAN, A.H., Sasekumar, A., Monazami Tehrani, Gh. and Rezayi, M., 2012. Distribution characteristic and ecological risk of heavy metals in surface sediments of West Port, Malaysia: Environment Protection Engineering, v. 38(4), p. 139-155, DOI: 10.5277/EPE120412.
-Thomilson, D.C., Wilson, D.J., Harris, C.R. and Jeffrey, D.W., 1980. Problem in heavy metals in estuaries and the formation of pollution index, Helgol, Wiss, Meeresunlter, v. 33 (1–4), p. 566–575.
-Tuncer, G.T., Tuncel, S.G., Tuncel, G. and Balkas, T.I., 1993. Metal Pollution in the Golden Horn, Turkey-Contribution of Natural and Anthropogenic Components since 1913: Water Science Technology, v. 28, p. 50-64.
-Topcuoğlu, B., 2015. Determination and evaluation of heavy metal pollution in greenhouse regions of Antalya (Turkey): International Conference on Chemical, Metallurgy and Environmental Engineering, Istanbul (Turkey), June 3-4, p. 287-295.
-Vrana, K., Rapant, S., Bodis, D., Marsina, K., Lexa, J., Pramuka, S., Mankovska, B., Curlik, J., Sefcik, P., Vojtas, J., Daniel, J. and Luciviansky, L., 1997. Geochemical atlas of the Slovak Republic at a scale 1:1,000,000: Journal of Geochemical Exploration, v. 60(1), p. 7-37.
-Wei, B., Jiang, F., Li, X. and Mu, S., 2010. Heavy metal induced ecological risk in the city of Urumqi, NW China, Environmental Monitoring and Assessment, v. 160, p. 33-45.
-Yongming, H., Peixuan, D., Junji, C. and Posmentier, E.S., 2006. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China: Science of The Total Environment, v. 355, p. 176-186.
-Zhang, X.P., Deng, W. and Yang, M., 2002. The background concentrations of 13 soil trace elements and their ationships to parent materials and vegetation in Xizang (Tibet), China: Journal of Asian Earth Sciences, v. 21, p. 167-174.
-Zhang, W., Feng, H., Chang, J., Qu, J., Xie, H. and Yu, L., 2009. Heavy metal contamination in surface sediments of yongtze river intertidal zone: An assessment from different indexes: Environmental pollution, v. 157, p. 1533-1543.
-Zhao, S., Feng, C., Yang, Y., Niu, J. and Shen, Z., 2012. Risk assessment of sedimentary metals in the Yangtze Estuary: New evidence of the relationships between two typical index methods: Journal of Hazardous Materials, v. 241– 242, p. 164– 172.