ارتفاع خط تعادل (TP-ELA و TPW-ELA) در ارتفاعات زاگرس

نوع مقاله : علمی -پژوهشی

نویسندگان

1 وزارت نیرو - شرکت آب منطقه ای اصفهان

2 دانشگاه اصفهان - دانشکده برنامه ریزی و علوم جغرافیائی

چکیده

ارتفاع خط تعادل یخچالی عموماً وابسته به میزان تراکم برف است که خود تحت­تأثیر توزیع بارش برف در فصل زمستان و همین‌طور فعالیت‌های بادرُفتی برف است. با توجه به اثر باد بر موقعیت ارتفاع خط تعادل، دو مفهوم ارتفاع خط تعادل دما-بارش و ارتفاع خط تعادل دما-بارش-باد به ترتیب جهت تفکیک خط تعادل متأثر از دمای فصل ذوب و بارش برف فصل سرد و همین‌طور خط تعادل متأثر از اثر دما، بارش و اثر تراکمی باد ارائه ‌شده است. در این تحقیق خط تعادل دما-بارش در مناطق مطالعاتی زردکوه، اشترانکوه، دنا، شاهو و گرین واقع در زاگرس مرتفع محاسبه ‌شد. به این منظور دما و بارش متوسط فصل ذوب و فصل بارش برف بر اساس داده‌های ثبت ‌شده در ایستگاه‌های هواشناسی تحلیل و ارتفاع خط تعادل دما-بارش حاضر با لحاظ آهنگ افت آدیاباتیک، گرادیان بارش-ارتفاع و وضعیت توپوگرافی محاسبه‌ گردیده است. همچنین بر اساس ارتفاع یخچال­های کوچک در این مناطق، وضعیت حاضر ارتفاع خط تعادل یخچالی دما-بارش-باد در این مناطق تخمین زده ‌شده است. بر این اساس ارتفاع خط تعادل یخچالی دما-بارش در مناطق مطالعاتی بین 4400 الی 4500 متر از سطح دریا (بالاتر از ارتفاع بلندترین قلل ارتفاعات زاگرس) و همچنین ارتفاع خط تعادل یخچالی دما-بارش-باد در محدوده ارتفاعات زردکوه و اشترانکوه حدود 3850 متر از سطح دریا اندازه‌گیری شده که حدود 650 متر پائین­تر از ارتفاع خط تعادل یخچالی دما-بارش است. بنابراین با توجه به ارتفاع خط تعادل یخچالی دما-بارش، در حال حاضر شرایط تشکیل توده‌های یخچالی در مناطق مطالعاتی فراهم نبوده و یخچال‌های کوچک مشاهده ‌شده در ارتفاعات دنا، زردکوه و اشترانکوه نتیجه فعالیت‌های بادرُفتی در دامنه‌های شمالی و تراکم برف در سیرک‌های یخچالی این مناطق است. 

کلیدواژه‌ها


عنوان مقاله [English]

Temperature-precipitation equilibrium-line altitude (TP-ELA) and temperature-precipitation- wind equilibrium-line altitude (TPW-ELA) in High Zagros

چکیده [English]

The equilibrium-line altitude (ELA) is generally dependent on the accumulation of snow which is influenced by the regional distribution of snow precipitation and local redistribution of snow by wind. Due to the effect of wind-blown snow on ELAs, the terms temperature-precipitation equilibrium-line altitude (TP-ELA) and temperature-precipitation wind equilibrium-line altitude (TPW-ELA) is introduced to distinguish between glacier ELAs reflecting the general winter precipitation and ablation season temperature in a region and glacier ELAs that are influenced by either snow deflation or accumulation (such as on cirque glaciers). In this study the TP-ELA in presently glaciated (Zardkuh and Oshtorankuh) and non-glaciated (Dena, Garein and Shahoo) areas is calculated. The altitude of small glaciers is also used to estimate the TPW-ELA. Based on this approach, regional climatic TP-ELA in Zardkuh, Oshtorankuh, Garein, Shahoo and Dena mountains is between 4400 to 4500 m a.s.l.(above main summits of the Zagros Mountains) TPW-ELA is around 3850 m a.s.l. in Zardkuh and Oshtorankuh Mountains which is 650 m lower than the regional TP-ELA. The present small glaciers in Zardkuh and Oshtorankuh are the result of leeward accumulation of wind-blown snow on small glacial cirques.

کلیدواژه‌ها [English]

  • equilibrium-line altitude
  • Glaciers
  • Climate
  • Zagros
  1. منابع
  2. -ابراهیمی، ب.، 1394. ردیابی و بررسی لندفرم های یخچالی کواترنر پایانی در ارتفاعات زاگرس ایران، رساله دکتری، دانشگاه اصفهان.
  3. -یمانی، م.، 1386. ژئومورفولوژی یخچال‌های زردکوه، پژوهش‌های جغرافیایی، شماره 59، ص 139-125.
  4. -Bobek, H., 1937. Die Rolle der Eiszeit in Nordwestiran. In: Z. Glestscherk. v. 25, p. 130-183.
  5. -Dahl, S.O. and Nesje, A., 1992. Paleoclimatic implications based on equilibrium-line altitude depressions of reconstructed Younger Dryas and Holocene cirque glaciers in inner Nordfjord, western Norway, Palaeo-geography, Palaeoclimatology, Palaeoecology, v. 94, p. 87-97.
  6. -Dahl, S.O., Nesje, A. and Ovstedal, J., 1997. Cirque glaciers as morphological evidence for a thin Younger Dryas ice sheet in east-central southern Norway, Boreas, v. 26, p. 161-80.
  7. -Ferrigno, J.G., 1991. Glaciers of the Middle East and Africa, Glaciers of Iran, In Williams, R.S., Jr and J.G. Ferrigno, eds, Satellite image atlas of glaciers of the world, Denver, CO, United States Geological Survey, G31–G47. (USGS Professional Paper 1386‌G-2.)
  8. -Grunert, J., Carls, H.G. and Preu, C., 1978. Rezente Vergletscher‌ungsspuren in zentraliranischen Hochgebirgen, Eiszeitalter Ggw, v. 28, p. 148-166.
  9. -Kesici, O., 2005. Glacio-morphological investigations of Siiphan and Cilo Mountains in regard to current global warming trends, TUBITAK (The Scientific and Technical Research Council of Turkey) Report No: 101Y131 (in Turkish).
  10. -Klein, A.G., Seltzer, G.O. and Isacks, B.L., 1999. Modern and last local glacial maximum snowlines in the Central Andes of Peru, Bolivia, and Northern Chile, Quaternary Research Reviews, v. 18, p. 63-84.
  11. -Kuhle, M., 1974. Vorläufige Ausführungen morphologischer Feldarbeitsergebnisse aus den SE-Iranischen Hochgebirgen am Beispiel des Kuh-i-Jupar, Z. Geomorphol, N.F., v. 18, p. 472-483.
  12. -Kuhle, M., 1976. Beitrage zur Quartarmorphologie SE-Iranischer Hochgebirge Die quartare Vergletscherung des Kuh-i-Jupar, Gottinger Geographische Abhandlungen, v. 2(67), p. 103 and p. 209.
  13. -Kuhle, M., 2008. The Pleistocene Glaciation of SE Iranian Mountains Exemplified by the Kuh-i-Jupar, Kuh-i-Lalezar and Kuh-i-Hezar Massifs in the Zagros, Polarforschung, v. 77 (2-3), p. 71-88.
  14. -Lichtenecker, N., 1938. Die gegenwartige und die eiszeitliche Schneegrenze in den Ostalpen, Verhandl. d. III. Intern. Quart~ir-Konferenz, Wien 1936, p. 141-147.
  15. -Lie, O., Dahl, S.O. and Nesje, A., 2003. A theoretical approach to glacier equilibrium-line altitudes using meteorological data and glacier mass balance records from southern Norway, The Holocene, v. 13(3), p. 365-372.
  16. -Mark, B., Harrison, S.P., Spessa, A., New, M., Evans, D.J.A. and Helmens, K.F., 2005. Tropical snowline changes at the last glacial maximum, a global assessment, Quaternary International, p. 168–201.
  17. -Messerli, B., 1967. Die eiszeitliche und die gegenwartige Vergletscherung in Mittelmeerraum, Geographica Helvetica., v. 22, p. 105-228.
  18. -Meier, M.F. and Post, A.S., 1962. Recent variations in mass net budgets of glaciers in western North America, International Association of Scienti" Hydrology, v. 58, p. 63-77.
  19. -Moussavi, M.S., Valadan Zoej, M.J., Vaziri, F., Sahebi, M.R. and Rezaei, Y., 2009. A new glacier inventory of Iran, Annals of Glaciology, v. 50 (53), p. 93-103.
  20. -Porter, SC., 2001. Snowline depression in the tropics during the last glaciation, Quaternary Science Reviews, v. 20, p. 1067-1091.
  21. -Preu, C., 1984. Die quartäre Vergletscherung der inneren Zardeh-Kuh-Gruppe (Zardeh-Kuh-Massiv), Zagros/Iran, Augsburger Geogr, H. 4. Augsburg.
  22. -Schweizer, G., 1972. Klimatisch bedingte Geomorphologische und Glazialo-gische Züge der Hochregion vorderasiatischer Gebirge (Iran und Ostanatolien) [Climatically based geomorphological and glaciolog-ical characteristics of the high-altitude regions of Near Eastern mountains (Iran and Eastern Anatolia)]: Erdwissenschaftliche Forschung, v. 4, p. 221-236.
  23. -Seif, A., 2015. Equilibrium-line altitudes of Late Quaternary glaciers in the Oshtorankuh Mountain, Iran. Quaternary International, v. 374, p. 126-143.
  24. -Seif, A. and Ebrahimi, B., 2014. Combined Use of GIS and Experimental Functions for the Morphometric Study of Glacial Cirques in Zardkuh Mountain, IRAN, Quaternary International, v. 353, p. 236-249.
  25. -Visser, P.C., 1938. Wissenschaftliche Ergebnisse der Niederl~mdischen Expeditionen in den Karakorum und die angrenzenden Gebiete in den Jahren 1922-1935., Glaziologie, v. 2, p. 1-216.