خاستگاه زمین ساختی ماسه‌سنگ های سازند بایندور (نئوپروتروزوئیک پسین) در برش چپقلو، شمال‌غرب ایران

نوع مقاله : علمی -پژوهشی

نویسندگان

1 دانشگاه تحصیلات تکمیلی علوم پایه زنجان (IASBS)

2 دانشگاه شهید بهشتی تهران

چکیده

جایگاه زمین ساختی ایران طی نئوپروتروزوئیک پسین به خوبی شناخته شده نیست و پیشنهاداتی از حاشیه غیرفعال (ایران به­عنوان بخشی از پلاتفرم آفرو-عربی) تا حاشیه فعال (ایران به­عنوان بخشی از زمین­های پیرامونی گندوانا) وجود دارد. خاستگاه زمین ساختی سازند بایندور که طی این زمان نهشته شده است، می­تواند اطلاعات ارزشمندی از تکامل زمین ساختی ایران طی نئوپروتروزوئیک پسین را فراهم کند. سازند بایندور در برش چپقلو به­طور غالب از سنگ­های سیلیسی آواری ارغوانی تیره تا قرمز رنگ، بیشتر گلسنگ و به میزان کم­تر ماسه­سنگ و سنگ­های کربناته، تشکیل شده است (m400~). ماسه­سنگ ها حاوی مقادیر فراوانی کوارتز، فلدسپار و قطعات سنگی ولکانیکی (اغلب آندزیتی و ریولیتی) هستند و ترکیب Q44F30RF26 (لیتیک آرکوز تا آرکوزیک لیتارنایت)، Qt47F30L23 و Qm37F30Lt33 دارند. این داده­ها به روشنی نشان می­دهد که ماسه­سنگ های سازند بایندور از منشا کمان ماگمایی با ترکیب سنگ­های ولکانیکی فلسیک/حدواسط و سنگ­های نفوذی گرانودیوریتی رخنمون یافته، منشا گرفته­اند. بلوغ نیافتگی بافتی و ترکیبی رسوبات سازند بایندور در کنار شکل نسبتا زاویه­دار تا زاویه­دار دانه­های ناپایدار همانند قطعات سنگی ولکانیکی، نشان دهنده منشا گرفتن محلی از سنگ­های رخنمون یافته اطراف (منشاهای نزدیک) و نهشت در یک حاشیه قاره­ای فعال است. این نتایج شواهد جدیدی از نقش فرورانش در این دوره زمانی در ایران، به­عنوان بخشی از زمین­های پیرامونی گندوانا را فراهم می­کنند.  

کلیدواژه‌ها


عنوان مقاله [English]

Tectonic provenance of the Bayandor sandstones (late Neoproterozoic) in the Chopoghlu section, Northwest Iran

چکیده [English]

The tectonic setting of Iran during late Neoproterozoic time is not fully understood, with proposals ranging from passive margin (Iran as a part of Afro-Arabian platform) to active margin (Iran as a part of Peri-Gondwanan terranes). Tectonic provenance of Bayandor Formation, which is deposited during this time, can provide constraints on late Neoproterozoic tectonic evolution of Iran. The Bayandor Formation in the Chopoghlu section is mainly composed of dark purple to red siliciclastics, mainly mudrocks and minor sandstones (~400m). The sandstones contain abundant quartz, volcanic lithic fragments (mainly andesite and rhyolite), and feldspars and have an average composition of Q44F30RF26 (lithic arkose to arkosic litharenite), Qt47F30L23 and Qm37F30Lt33. The data presented here clearly indicate that the Bayandor sandstones were derived from magmatic arc sources dominated by relatively felsic/intermediate volcanic rocks and unroofed granodiorite intrusives. Textural and compositional immaturity of Bayandor sediments, along with sub-angular to angular shapes of labile grains such as volcanic rock fragments, suggest local derivation from surrounding exposed basement (proximal sources), and deposition on an active continental margin. These results provide new constraints on subduction scenario during this time interval in Iran, as a part of the Peri-Gondwanan terranes.

کلیدواژه‌ها [English]

  • Chopoghlu- Tectonic provenance- Bayandor Formation- Magmatic arc- late Neoproterozoic
-آقانباتی، س.ع.، 1383. زمین‌شناسی ایران، سازمان زمین‌شناسی و اکتشافات معدنی کشور، 586 ص.
-اعتمادسعید، ن.، حسینی برزی، م.، آدابی، م.ح. و صادقی، ع.، 1392. خاستگاه زمین‌ساختی سازند کاهار (نئوپروتروزوئیک پسین) با استفاده از داده‌های آنالیز مودال و کانی‌های سنگین در برش نمونه، کوه کاهار، البرز مرکزی، مجله علوم زمین، شماره 88، ص 3-12.
-قویدل سیوکی، م.، 1374. مطالعه پالینولوژیکی مقدماتی سازند بایندور در برش الگو واقع در شمال دهکده دوران، جنوب زنجان، مجله علوم زمین، شماره 17و 18، ص 29-24.
-لاسمی، ی.، 1379. رخساره‌ها، محیط‌های رسوبی و چینه‌نگاری سکانسی نهشته سنگ‌های پرکامبرین بالایی و پالئوزوئیک ایران، سازمان زمین‌شناسی کشور، طرح تدوین کتاب زمین‌شناسی ایران، شماره 78، 180 ص.
-Armstrong-Altrin, J.S., Machain-Castillo, M.L., Rosales-Hoz, L., Carranza-Edwards, A., Sanchez-Cabeza, J.A. and Ruiz-Fernandez, A.C., 2015. Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis, Continental Shelf Research, v. 95, p. 15-26.
-Armstrong-Altrin, J.S., Nagarajan, R., Madhavaraju, J., Rosalez-Hoz, L., Lee, Y.I., Ba- laram, V., Cruz-Martinez, A. and Avila-Ramirez, G., 2013. Geochemistry of the Jurassic and upper Cretaceous shales from the Molango Region, Hidalgo, Eastern Mexico: implications of source area weathering, provenance, and tectonic setting. Comptes Rendus Geoscience, v. 345, p. 185-202.
-Azizi, H., Chung, S.L., Tanaka, T. and Asahara, Y., 2011. Isotopic dating of the Khoy metamorphic complex (KMC), northwestern Iran: a significant revision of the formation age and magma source. Precambrian Research, v. 185, p. 87-94.
-Bhatia, M.R., 1983. Plate tectonics and geochemical composition of sandstones, Geology, v. 91, p. 611-627.
-Bhatia, M.R., 1985. Rare Earth Element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control, Sedimentary Geology, v. 45, p. 97-113.
-Boggs, Jr. S., 2009. Petrology of Sedimentary Rocks, Cambridge University Press, 600 p.
-Coe, A.L., 2010. Sampling, In: Coe A.L. (Eds.), Geological Field Techniques, Wiley-Blackwell, p. 250-257.
-Condie, K.C., Lee, D. and Lang Farmer, G., 2001. Tectonic setting and provenance of the Neoproterozoic Unita Mountain and Big Cottonwood groups, northern Utah: constraints from geochemistry, Nd isotopes and detrital modes. Sedimentary Geology, v. 141-142, p. 443-464.
-Dickinson, W.R., 1970. Interpreting detrital modes of graywacke and arkose, Sedimentary Petrology, v. 40, p. 695-707.
-Dickinson, W.R., 1985. Interpreting provenance relations from detrital modes of sandstones, In: Zuffa, G.G. (Eds.), Provenance of arenites, Dordrecht, Reidel Publication, p. 333-361.
-Etemad-Saeed, N., Hosseini-Barzi, M., Adabi, M.H., Sadeghi, A. and Houshmandzadeh, A., 2015. Provenance of Neoproterozoic sedimentary basement of northern Iran, Kahar Formation, Journal of African Earth Sciences, v. 111, p. 54-75.
-Folk, R.L., 1980. Petrology of Sedimentary Rocks, Hemphill Publishing Company, Austin, Texas, 184 p.
-Hamdi, B., Brasier, M.D. and Zhiwen, J., 1989. Earliest skeletal fossils from Precambrian–Cambrian boundary strata, Elburz Mountains, Iran, Geological Magazine, v.126(03), p. 283-289.
-Hassanzadeh, J., Stockli, D.F., Horton, B.K., Axen, G.J., Stockli, L.D., Grove, M., Schmitt, A.K. and Walker, J.D., 2008. U-Pb zircon geochronology of late Neoproterozoic-Early Cambrian granitoids in Iran: Implications for paleogeography, magmatism and exhumation history of Iranian basement, Tectonophysics, v. 451, p. 71-96.
-Haughton, P.D.W., Todd, S.P. and Morton, A.C., 1991. Sedimentary provenance studies, In: Morton, A.C., Todd, S.P., Haughton, P.D.W. (Eds.), Developments in Sedimentary Provenance Studies, Geological Society of London, pp. 1e13, Special Publication 57.
-Horton, B.K., Hassanzadeh, J., Stockli, D.F., Axen, G.J., Gillis, R.J., Guest, B., Amini, A.H., Fakhari, M., Zamanzadeh, S.M. and Grove, M., 2008. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics, Tectonophysics, v. 451, p. 97-122.
-Honarmand, M., Li, X.H., Nabatian, G., Rezaeian, M. and Etemad-Saeed, N., 2016. Neoproterozoic–Early Cambrian tectono-magmatic evolution of the Central Iranian terrane, northern margin of Gondwana: Constraints from detrital zircon U–Pb and Hf–O isotope studies, Gondwana Research, v. 37, p. 285-300.
-Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D. and Sares, S.W., 1984. The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method, Sedimentary Petrology, v. 54, p. 103-116.
-Johnsson, M.J., 1993. The system controlling the composition of clastic sediments, In: Johnsson, M.J., Basu, A. (Eds.), Processes controlling the composition of clastic sediments, Geological Society of America Special Paper 285, p.1-19.
-Lewis, D.W. and McConchie, D., 1994. Practical sedimentology, Chapman and Hall Press, 213 p.
-McLennan, S.M., Taylor, S.R., McCulloch, M.T. and Maynard, J.B., 1990. Geochemi-cal and Nd–Sr isotopic composition of deep-sea turbidites: crustal evolutionand plate tectonic associations, Geochimica et Cosmochimica Acta, v. 54, p. 2015-2050.
-Ramezani, J. and Tucker, R., 2003. The Saghand region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics, American Journal of Science, v. 303, p. 622-665.
-Roser, B.P. and Korsch, R.J., 1986. Determination of tectonic setting of sandstone–mudstone suites using SiO2 content and K2O/Na2O ratio, Geology, v. 94, p. 635-650.
-Roser, B.P. and Korsch, R.J., 1988. Provenance signatures of sandstone–mudstone suitesdetermined using discriminant function analysis of major-element data, Chemical Geology, v. 67, p. 119-139.
-Saki, A., 2010. Proto-Tethyan remnants in northwest Iran: Geochemistry of the gneisses and metapelitic rocks, Gondwana Research, v. 17, p. 704-714.
-Shafaii Moghadam, H., Khademi, M., Hu, Z., Stern, R.J., Santos, J.F. and Wu, Y., 2015. Cadomian (Ediacaran-Cambrian) arc magmatism in the ChahJam-Biarjmand metamorphic complex (Iran): Magmatism along the northern active margin of Gondwana, Gondwana Research, v. 27, p. 439-452.
-Stöcklin, J., Ruttner, A. and Nabavi, M., 1964. New data on the lower Paleozoic and Pre-Cambrian of North Iran, Geological Survey of Iran Report No. 1.
-Stöcklin, J. and Eftekharnezhad, J., 1969. Geological map of Zanjan, Geological Survey of Iran, scale 1: 250,000.