نقش اختلاط ماگمایی و مولفه‌های پوسته‌ای در تکوین سنگ‌های آتشفشانی ائوسن در محدوده شمال برزابیل، جنوب خاوری کوه‌های طارم

نوع مقاله : علمی -پژوهشی

نویسندگان

سازمان زمین‌شناسی و اکتشافات معدنی کشور

10.29252/esrj.9.1.83

چکیده

منطقه مورد مطالعه دربردارنده سنگ­های آتشفشانی ائوسن با ترکیب بازالتیک­آندزیت، آندزیت، تراکی­آندزیت، تراکیت-تراکی­داسیت، داسیت و ریولیت-ایگنمبریت است. این سنگ­ها دربردارنده شواهد آمیختگی-اختلاط ماگمایی شامل قطعه­های بازیک-حدواسط درون خمیره اسیدی و فنوکریست­های پلاژیوکلاز با بافت الکی، ساختار لانه­زنبوری، منطقه­بندی نوسانی و حاشیه انحلالی هستند. آن­ها ویژگی­های سری­های ماگمایی کالک­آلکالن، شوشونیتی و علائم فرورانش را نشان می­دهند. الگوهای به­هنجار شده عناصر نادر خاکی و نمودارهای عنکبوتی از گدازه­های بازیک-حدواسط با الگوهای کمان قاره­ای و الگوهای گدازه­های اسیدی با الگوی ریولیت پرآلومینوس و پوسته بالایی انطباق دارند. به نظر می­رسد که ماگمای بازیک والد، طی ذوب بخشی آستنوسفر و نازک­لایه­ای شدن لیتوسفر زیرقاره­ای حاصل شده است. تجمع ماگمای والد در پوسته سبب ذوب بخشی آن و ایجاد ماگمای اسیدی شد. آغشتگی ماگمای والد با مولفه­های پوسته­ای و آمیختگی و اختلاط با ماگمای اسیدی، نقش مهمی در گوناگونی ترکیبی سنگ­های آتشفشانی مورد مطالعه داشته است. 

کلیدواژه‌ها


عنوان مقاله [English]

The role of magma mixing and crustal components in generation of the Eocene volcanic rocks in north Barzabil area, southeast Tarom range

چکیده [English]

The investigated area comprise of the Eocene volcanic rocks with basaltic andesite, andesite, trachy andesite, trachyte-trachydacite to dacite and rhyolite-ignimbrite in compositions. These rocks exhibit evidences of magma mingling-mixing including basic-intermediate inclusions enclosed by acidic matrix and plagioclase phenocrysts which display sieve texture, honeycomb structure, oscillatory zoning and dissolution margin. They show calc alkaline, shoshonitic and subduction signatures. The normalized REE patterns and spider diagrams of basic-intermediate lavas follow continental arc and those patterns of acidic rocks overlap with the patterns of peraluminous rhyolite and upper crust. It seems that the basic-parental magma produced from partial melting of asthenosphere which consequence sub continental lithospheric mantle delamination. The parental magma accumulated in the upper crust and produced partial melting of crust and acidic magma. Contamination of parental magma with crustal components and mingling and mixing with acidic magma, have important roles in diversity of the compositions of the investigated volcanic rocks.

کلیدواژه‌ها [English]

  • andesite
  • contamination
  • ignimbrite
  • breccia
  • rhyolite
-افتخارنژاد، ج.، 1359. تفکیک بخش‌های مختلف ایران از لحاظ وضعیت ساختاری در ارتباط با حوضه-های رسوبی، نشریه انجمن نفت ایران، شماره 82، ص 19-28.
-پرچکانی، م.، شهرابی، م. و بازرگانی گیلانی، ک.، 1392. بررسی ویژگی‌های فعالیت آتشفشانی ائوسن کوه‌های طارم در البرز باختری ایران و مقایسه آن با فعالیت آتشفشانی مشابه در ناحیه یونت‌داغ (Yuntdağ) ترکیه، فصلنامه علوم زمین، سال بیست و سوم، شماره 89، ص 109-118.
-زارعی سهامیه، ر.، 1371. بررسی پتروگرافی و ژئوشیمی سنگ‌های آتشفشانی شمال ابهر و ارتباط ولکانیسم منطقه با کانی سازی‌های انجام شده، رساله کارشناسی‌ارشد، دانشگاه تربیت معلم، 249 ص.
-زارعی سهامیه، ر.، شاهرخی، س. و.، پیروان، ح.ر. و جعفریان، م.، 1387. پترولوژی سنگ‌های ماگمایی شمال ابهر (جنوب شرق زنجان)، پانزدهمین همایش انجمن بلورشناسی و کانی‌شناسی ایران، دانشگاه فردوسی مشهد، ص 593-597.
-عابدیان، ن.، شاهین، ا. و علی‌پور، م.، 1387. اکتشافات ژئوشیمیایی سیستماتیک ورقه 1:100.000 ابهر، طرح زمین‌شناسی عمومی، پروژه ژئوشیمیایی، سازمان زمین‌شناسی و اکتشافات معدنی کشور، 192 ص.
-محمدی، م. و حاج‌ابولفتح، ع.، 1390. پتروگرافی و ژئوشیمی ولکانیسم ائوسن منطقه ذاکر (شرق زنجان)، سی‌امین گردهمایی علوم زمین، سازمان زمین‌شناسی و اکتشافات معدنی کشور، ص 1-7.
-مهابادی، س. و فنودی، م.، 1371. نقشه زمین‌شناسی با مقیاس 1:100.000 تاکستان، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
-مؤید، م.، 1370. بررسی پتروگرافی و پتروشیمی سنگ‌های نوار ولکانوپلوتونیک منطقه طارم در ارتباط با ژنز مس، رساله کارشناسی‌ارشد، دانشگاه تبریز، 187 ص.
-نبوی، م.ح.، 1355. دیباچه‌ای بر زمین‌شناسی ایران، سازمان زمین‌شناسی و اکتشافات معدنی کشور، 109 ص.
-Aghanabati, A., 2004. Geology of Iran. Ministry of Industry and Mines: Geological Survey of Iran, 582 p.
-Alavi, M., 1991. Tectonic map of the Middle East, Scale 1:5,000,000: Geological Survey of Iran.
-Allen, M.B., Ghassemi, M.R., Shahrabi, M. and Qorashi, M., 2003. Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran: Journal of structural geology, v. 25, p. 659-672.
-Aragon, E., Gonzalez, P., Aguilera, Y. E., Cavarozzi, C. E., Llambias, E. and Rivalenti, G., 2003. Thermal divide andesites-trachytes, petrologic evidence, and implications from Jurassic north Patagonian massif alkaline volcanism: Journal of South American Earth Sciences, v. 16, p. 91-103.
-Asiabanha, A. and Foden, J., 2012. Post-collisional transition from an extensional volcano-sedimentary basin to a continental arc in the Alborz ranges, N-Iran: Lithos, v. 148, p. 98-111.
-Bailie, R., Rajeshm, H.M. and Gutzmer, J., 2012. Bimodal volcanism at the western margin of the Kaapvaal Craton in the aftermath of collisional events during the Namaqua-Natal Orogeny: The Koras Group, South Africa: Precambrian Research, v. 200, p. 163-183.
-Camera, M.M.M., Dahlquist, J.A., Basei, M.A.S., Galindo, C., Neto, M. and Facetti, N., 2016. F-rich strongly peraluminous A-type magmatism in the pre-Andean foreland Sierras Pampeanas, Argentina: Geochemical, geochronological, isotopic constraints and petrogenesis: Lithos, v. 277, p. 210-227.
-Christiansen, E.H. and McCurry, M., 2008. Contrasting origins of Cenozoic silicic volcanic rocks from the western Cordillera of the United States: Bull Volcanol, v. 70, p. 251-267. doi: 10.1007/s00445-007-0138-1.
-Çoban, H., Karacık, Z. and Ece, Ö., 2012. Source contamination and tectonomagmatic signals of overlapping Early to Middle Miocene orogenic magmas associated with shallow continental subduction and asthenospheric mantle flows in Western Anatolia: A record from Simav (Kütahya) region: Lithos, v. 140-141, p. 119-141.
-Cole, J. W., Gamble, J. A., Burt, R. M., Carroll, L.D. and Shelley, D., 2001. Mixing and mingling in the evolution of andesite-dacite magmas; evidence from co-magmatic plutonic enclaves, Taupo volcanic zone, New Zealand: Lithos, v. 59, p. 25-46.
-Ding, H., Zhang, Z., Dong, X., Yan, R., Lin, Y. and Jiang, H., 2014. Cambrian ultrapotassic rhyolites from the Lhasa terrane, south Tibet: Evidence for Andean-type magmatism along the northern active margin of Gondwana: Gondwana Research, 01218, No of Pages 14. doi: 10.1016/j.gr.2014.02.003.
-Fan, W., Wang, Y., Zhang, A., Zhang, F. and Zhang, Y., 2010. Permian arc-back-arc basin development along the Ailaoshan tectonic zone: Geochemical, isotopic and geochronological evidence from the Mojiang volcanic rocks, southwest China: Lithos, v. 119, p. 553-568.
-Gill, R., 2010. Igneous rocks and processes, a practical guide: A John Wiley & Sons Publication, 428 p.
-Guest, B., Stockli, D.F., Grove, M., Axen, G.J., Lam, P.S. and Hassanzadeh, J., 2006. Thermal histories from the central Alborz mountains, northern Iran: Implication for the spatial and temporal distribution of deformation in northern Iran: Geosphere, v. 2, p. 35-52.
-Hastie, A.R., Kerr, A.C., Pearce, J.A. and Mitchell, S.F., 2007. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram: Journal of Petrology, v. 48, p. 2341-2357.
-Hirayama, K., Haghipour, A. and Hajian, J., 1965. Geology of the Zanjan area: The Tarom district, eastern part: Geological Survey of Iran, 28, 33 p.
-Johnson, J.A. and Grunder, A.L., 2000. The making of intermediate composition magma in a bimodal suite: Duck Butte Eruptive Center, Oregon, USA. Journal of Volcanology and Geothermal Research, v. 95, p. 175-195.
-Khanna, T.C., Sai, V.V.S., Bizimis, M. and Krishna, A.K., 2015. Petrogenesis of basalt-high-Mg andesite-adakite in the Neoarchean Veligallu greenstone terrane: Geochemical evidence for a rifted back-arc crust in the eastern Dharwar craton, India: Precambrian Research, v. 258, p. 260-277.
-Koralay, T., Kadioglu, Y.K. and Davis, P., 2011. Weak compositional zonation in a silicic magmatic system: Incesu ignimbrite, Central Anatolian Volcanic Province (Kayseri-Turkey): Journal of Asian Earth Sciences, v. 40, p. 371-393.
-Kuscu, G.G. and Geneli, F., 2010. Review of post-collisional volcanism in the Central Anatolian volcanic Province (Turkey), with special reference to the Tepekoy volcanic Complex: International Journal of Earth Sciences, v. 99, p. 593-621.
-Li, H., Ling, M.X., Ding, X., Zhang, H., Li, C.Y., Liu, D.Y. and Sun, W.D., 2014. The geochemical characteristics of Haiyang A-type granite complex in Shandxong, eastern China: Lithos, v. 200-201, p. 142-156.
-Liu, H.Q., Xu, Y.G., Tian, W., Zhong, Y.T, Mundil, R., Li, X.H., Yang, Y.H., Luo, Z.Y. and Shang-Guan, S.M., 2014. Origin of two types of rhyolites in the Tarim Large Igneous Province: Consequences of incubation and melting of a mantle plume: Lithos, 03196, No of Pages 14. doi: 10.1016/j.lithos.2014.02.007.
-Long, X., Wilde, S.A., Wang, Q., Yuan, C., Wang, X.C., Li, J., Jiang, Z. and Dan, W., 2015. Partial melting of thickened continental crust in central Tibet: Evidence from geochemistry and geochronology of Eocene adakitic rhyolites in the northern Qiangtang Terrane: Earth and Planetary Science Letters, v. 414, p. 30-44.
-Manikyamba, C., Ganguly, S., Santosh, M., Saha, A., Chatterjee, A. and Khelen, A.C., 2015. Neoarchean arc-juvenile back-arc magmatism in eastern DharwarCraton, India: Geochemical fingerprints from the basalts of Kadiri greenstone belt: Precambrian Research, v. 258, p. 1-23.
-Manikyamba, C., Saha, A., Ganguly, S., Santosh, M., Lingadevaru, M., Singh, M.R. and Rao, D.V.S., 2014. Sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone terrane, western Dharwar Craton: Implications on pyroclastic volcanism and sedimentation in an active continental margin: Journal of Asian Earth Sciences, v. 96 p. 269-278.
-Miyashita, S., Adachi, Y. and Umino, S., 2003. Along-axis magmatic system in the northern Oman ophiolite: Implication of compositional variation of the sheeted dike complex: Geochemistry, Geophysics, Geosystems, Published by AGU and the Geochemical Society, v. 4, p. 1-26.
-Nogol-e-Sadat, M.A., Ahmadzadeh Heravi, M., Almasian, M., Poshtkouhi, M. and Hushmandzadeh, A., 1993. Tectonic Map of Iran, Scale 1:1000000: Geological Survey of Iran.
-Parker, D.F., Ghosh, A., Price, C.W., Rinard, B.D., Culler, R.L. and Ren, M., 2005. Origin of rhyolite by crustal melting and the nature of parental magmas in the Oligocene Conejos Formation, San Juan Mountains, Colorado, USA: Journal of Volcanology and Geothermal Research, v. 139, p. 185-210.
-Pearce, J.A., 1996. A user’s guide to basalt discrimination diagrams: Geological Association of Canada, v. 12, p. 79-113.
-Pearce, J.A. and Cann, J., 1973. Tectonic setting of basic volcanic rocks using trace element analysis: Earth and Planetary Science Letters, v. 19, p. 290-300.
-Plank, T., 2005. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents: Journal of Petrology, v. 46, p. 921-944.
-Qian, X., Feng, Q., Yang, W., Wang, Y., Chonglakmani, C. and Monjai, D., 2015. Arc-like volcanic rocks in NW Laos: Geochronological and geochemical constraints and their tectonic implications: Journal of Asian Earth Sciences, v. 98, p. 342-357.
-Renjith, M.L., 2014. Micro-textures in plagioclase from 1994-1995 eruption, Barren island volcano: Evidence of dynamic magma plumbing system in the Andaman subduction zone: Geoscience Frontiers, v. 5, p. 113-126.
-Rudnick, R.L. and Gao, S., 2004. Composition of the continental crust: Treatise on Geochemistry, v. 3, p. 1-64.
-Sensarma, S. and Palme, H., 2013. Silicate liquid immiscibility in the ~2.5 Ga Fe-rich andesite at the top of the Dongargarh large igneous province (India): Lithos, v. 170-171, p. 239-251.
-Shao, F., Niu, Y., Regelous, M. and Zhu, D.C., 2015. Petrogenesis of peralkaline rhyolites in an intra-plate setting: Glass House Mountains, southeast Queensland, Australia: Lithos, v. 216-217, p. 196-210.
-Shelley, D., 1993. Igneous and metamorphic rocks under the microscope, Classification, texures, microstructures and mineral preferred-orientations: Chapman & Hall, 445 p.
-Sheth, H.C., Choudhary, A.K., Cucciniello, C., Bhattacharyya, S., Laishram, R. and Gurav, T., 2012. Geology, petrochemistry and genesis of the bimodal lavas of Osham Hill, Saurashtra, northwestern Deccan Traps: Journal of Asian Earth Sciences, v. 43, p. 176-192.
-Shrivastava, J.P. and Ahmad, M., 2009. Trace element compositions of iridium enriched illite-smectite assemblages from a K/Pg boundary section in the Anjar area of the Deccan volcanic province: palaeoenvironmental implications: Cretaceous Research, v. 29, p. 592-602.
-Stöcklin, J. and Eftekhar-nezhad, J., 1969. Explanatory text of the Zanjan quadrangle map on scale 1:250,000: Geological survey of Iran, No. D4, 61 p.
-Stöcklin, J., 1968. Structural history and tectonics of Iran: A review, American Association of Petrology Geologists, v. 52, p. 1229-1258.
-Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geological Society of London: Special Publication, v. 42, p. 313-345.
-Winchester, J.A. and Floyd, P.A., 1977. Geochemical discrimination of different series and their differentiation products using immobile elements: Journal of Chemical Geology, v. 20, p. 325-343.
-Winter, J.D., 2014. Principles of igneous and metamorphic petrology: Second edition, Pearson Education Limited, 737 p.
-Wood, D.A., 1980. The application of Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province: Earth and Planetary Science Letters, v. 50, p. 11-30.